Collaborative Research: Data-Driven Variational Multiscale Reduced Order Models for Biomedical and Engineering Applications
协作研究:用于生物医学和工程应用的数据驱动的变分多尺度降阶模型
基本信息
- 批准号:2012253
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Mathematical models are a fundamental tool for improving our knowledge of natural and industrial processes. Their use in practice depends on their reliability and efficiency. Reliability requires a fine-tuning of the model parameters and an accurate assessment of the sensitivity to noisy inputs. Efficiency is particularly critical in optimization problems, where the computational procedure identifies the best working conditions of a complex system. These requirements lead to solving models with millions or even billions of unknowns many times. This process may require days or weeks of computations on high-performance computing facilities. To mitigate these costs, we need new modeling strategies that allow model-runs in minutes to hours on local computing facilities. Reduced order models (ROMs) are low-dimensional approximations that can decrease the computational cost of current computational models by orders of magnitude. Having in mind biomedical and wind-engineering applications, this project proposes novel methods of model reduction. Data and numerical results from the expensive (or high-fidelity) models are combined with machine learning approaches, to obtain ROMs that attain both efficiency and accuracy at an unprecedented level. The new data-driven ROM framework will make possible the numerical simulation of aortic dissections, pediatric surgery, or wind farm optimization on a laptop in minutes, and aims at becoming a critical and trustworthy tool in decision-making processes. This project will support one graduate student each year at each of the three institutions.Data assimilation (DA), uncertainty quantification (UQ), and shape optimization (SO) are central to the development of computational models for significant biomedical and engineering applications. Since these applications require a large number of model simulations, running an expensive full order model (FOM) is generally prohibitively expensive. For systems that display dominant structures, reduced order models (ROMs) can decrease the FOM computational cost by orders of magnitude. Thus, for the clinical and engineering applications above, ROMs appear as a natural and practical alternative to the prohibitively expensive FOMs running on high-performance computing facilities. Unfortunately, to capture all the geometric scales in the hemodynamics of aortic dissections or to cope with the large Reynolds number in the wind farm optimization, hundreds and thousands of ROM modes are necessary. These relatively high-dimensional ROMs are still not viable to effectively perform DA, UQ, or SO for these applications. What is needed is ROMs that are not only low-dimensional and efficient, but also accurate. To develop ROMs that are accurate in realistic, under-resolved regimes, the ROM closure problem needs to be solved, that is, the effect of the discarded ROM modes on the ROM dynamics needs to be modeled. The proposed research puts forth a new data-driven ROM paradigm that centers around the hierarchical structure of variational multiscale (VMS) methodology and utilizes modern machine learning and numerical and observational data to develop structural ROM closures that can dramatically increase the ROM accuracy at a modest computational cost. The novel data-driven VMS-ROM paradigm maintains the low computational cost of current ROMs but dramatically increases the ROM accuracy. Biomedical applications in thoracic and pediatric surgery (aortic dissections and Fontan procedure – where the fate of the patient depends significantly on the shape of the vessels) as well as wind-engineering applications are specifically targeted. The data-driven VMS-ROM framework will finally make possible the efficient DA, UQ, and SO in these and, possibly, other fields relying on mathematical and computational modeling.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
数学模型是提高我们对自然和工业过程知识的基本工具。它们在实践中的使用取决于它们的可靠性和效率。可靠性要求对模型参数进行微调,并准确评估对噪声输入的敏感性。在优化问题中,效率是特别重要的,其中计算过程确定了一个复杂系统的最佳工作条件。这些需求导致需要多次解决包含数百万甚至数十亿未知数的模型。此过程可能需要在高性能计算设备上进行数天或数周的计算。为了降低这些成本,我们需要新的建模策略,允许在几分钟到几小时内在本地计算设备上运行模型。降阶模型(ROMs)是一种低维近似,可以将当前计算模型的计算成本降低几个数量级。考虑到生物医学和风力工程的应用,这个项目提出了新的模型简化方法。来自昂贵(或高保真)模型的数据和数值结果与机器学习方法相结合,以获得在前所未有的水平上实现效率和准确性的rom。新的数据驱动ROM框架将使主动脉夹层、儿科手术或风力发电场优化的数值模拟在几分钟内在笔记本电脑上成为可能,旨在成为决策过程中关键且值得信赖的工具。该项目每年将资助三所院校各一名研究生。数据同化(DA)、不确定性量化(UQ)和形状优化(SO)是重要生物医学和工程应用计算模型发展的核心。由于这些应用程序需要大量的模型模拟,因此运行昂贵的全订单模型(FOM)通常非常昂贵。对于显示主导结构的系统,降阶模型(ROMs)可以将FOM计算成本降低几个数量级。因此,对于上述临床和工程应用程序,rom似乎是在高性能计算设施上运行昂贵的fom的自然和实用的替代方案。不幸的是,为了捕捉主动脉夹层血流动力学中的所有几何尺度,或者为了应对风电场优化中的大雷诺数,需要成百上千的ROM模式。这些相对高维的rom仍然无法有效地为这些应用程序执行DA、UQ或SO。我们需要的是不仅低维、高效,而且精确的rom。为了开发在现实的、未解决的情况下准确的ROM,需要解决ROM关闭问题,即需要对丢弃的ROM模式对ROM动力学的影响进行建模。该研究提出了一种新的数据驱动的ROM范式,该范式以变分多尺度(VMS)方法的层次结构为中心,利用现代机器学习和数值和观测数据来开发结构ROM闭包,可以在适度的计算成本下显着提高ROM精度。新的数据驱动的VMS-ROM模式保持了当前ROM的低计算成本,但显著提高了ROM的精度。生物医学应用在胸外科和儿科手术(主动脉解剖和Fontan手术——病人的命运很大程度上取决于血管的形状)以及风力工程应用中是特别针对的。数据驱动的VMS-ROM框架最终将使这些以及可能依赖于数学和计算建模的其他领域的高效DA、UQ和SO成为可能。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Verifiability of the Data-Driven Variational Multiscale Reduced Order Model
数据驱动的变分多尺度降阶模型的可验证性
- DOI:10.1007/s10915-022-02019-y
- 发表时间:2022
- 期刊:
- 影响因子:2.5
- 作者:Koc, Birgul;Mou, Changhong;Liu, Honghu;Wang, Zhu;Rozza, Gianluigi;Iliescu, Traian
- 通讯作者:Iliescu, Traian
On Optimal Pointwise in Time Error Bounds and Difference Quotients for the Proper Orthogonal Decomposition
- DOI:10.1137/20m1371798
- 发表时间:2020-10
- 期刊:
- 影响因子:0
- 作者:Birgul Koc;S. Rubino;M. Schneier;J. Singler;T. Iliescu
- 通讯作者:Birgul Koc;S. Rubino;M. Schneier;J. Singler;T. Iliescu
Lagrangian Reduced Order Modeling Using Finite Time Lyapunov Exponents
使用有限时间 Lyapunov 指数的拉格朗日降阶建模
- DOI:10.3390/fluids5040189
- 发表时间:2020
- 期刊:
- 影响因子:1.9
- 作者:Xie, Xuping;Nolan, Peter J.;Ross , Shane D.;Mou , Changhong;Iliescu, Traian
- 通讯作者:Iliescu, Traian
Hybrid data-driven closure strategies for reduced order modeling
用于降阶建模的混合数据驱动闭合策略
- DOI:10.1016/j.amc.2023.127920
- 发表时间:2023
- 期刊:
- 影响因子:4
- 作者:Ivagnes, Anna;Stabile, Giovanni;Mola, Andrea;Iliescu, Traian;Rozza, Gianluigi
- 通讯作者:Rozza, Gianluigi
Data-driven variational multiscale reduced order models
- DOI:10.1016/j.cma.2020.113470
- 发表时间:2021-01-01
- 期刊:
- 影响因子:7.2
- 作者:Mou, Changhong;Koc, Birgul;Iliescu, Traian
- 通讯作者:Iliescu, Traian
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Traian Iliescu其他文献
Residual-based data-driven variational multiscale reduced order models for parameter-dependent problems
- DOI:
10.1007/s40314-025-03273-0 - 发表时间:
2025-06-04 - 期刊:
- 影响因子:2.500
- 作者:
Birgul Koc;Samuele Rubino;Tomás Chacón Rebollo;Traian Iliescu - 通讯作者:
Traian Iliescu
Variational multiscale evolve and filter strategies for convection-dominated flows
用于对流主导流动的变分多尺度演化与滤波策略
- DOI:
10.1016/j.cma.2025.117811 - 发表时间:
2025-04-01 - 期刊:
- 影响因子:7.300
- 作者:
Maria Strazzullo;Francesco Ballarin;Traian Iliescu;Tomás Chacón Rebollo - 通讯作者:
Tomás Chacón Rebollo
Traian Iliescu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Traian Iliescu', 18)}}的其他基金
Data-Driven Computation of Lagrangian Transport Structure in Realistic Flows
现实流动中拉格朗日输运结构的数据驱动计算
- 批准号:
1821145 - 财政年份:2018
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Collaborative Research: Reduced Order Modeling of Realistic Noisy Flows
协作研究:现实噪声流的降阶建模
- 批准号:
1522656 - 财政年份:2015
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
CMG Collaborative Research: Ocean Modeling by Bridging Primitive and Boussinesq Equations
CMG 合作研究:通过连接原始方程和 Boussinesq 方程进行海洋建模
- 批准号:
1025314 - 财政年份:2010
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
CMG Collaborative Research: A New Modeling Framework for Nonhydrostatic Simulations of Small-Scale Oceanic Processes
CMG 协作研究:小规模海洋过程非静水力模拟的新建模框架
- 批准号:
0620464 - 财政年份:2006
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Scientific Computing Research Environment for the Mathematical Sciences (SCREMS)
数学科学科学计算研究环境 (SCREMS)
- 批准号:
0322852 - 财政年份:2003
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: Three-Dimensional Numerical Investigation of Density Currents
合作研究:密度流的三维数值研究
- 批准号:
0209309 - 财政年份:2002
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: GEO OSE Track 2: Developing CI-enabled collaborative workflows to integrate data for the SZ4D (Subduction Zones in Four Dimensions) community
协作研究:GEO OSE 轨道 2:开发支持 CI 的协作工作流程以集成 SZ4D(四维俯冲带)社区的数据
- 批准号:
2324714 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: Constraining next generation Cascadia earthquake and tsunami hazard scenarios through integration of high-resolution field data and geophysical models
合作研究:通过集成高分辨率现场数据和地球物理模型来限制下一代卡斯卡迪亚地震和海啸灾害情景
- 批准号:
2325311 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E: data-enabled dynamic microstructural modeling of flowing complex fluids
合作研究:CDS
- 批准号:
2347345 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: Data-Driven Elastic Shape Analysis with Topological Inconsistencies and Partial Matching Constraints
协作研究:具有拓扑不一致和部分匹配约束的数据驱动的弹性形状分析
- 批准号:
2402555 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
- 批准号:
2409395 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: Frameworks: MobilityNet: A Trustworthy CI Emulation Tool for Cross-Domain Mobility Data Generation and Sharing towards Multidisciplinary Innovations
协作研究:框架:MobilityNet:用于跨域移动数据生成和共享以实现多学科创新的值得信赖的 CI 仿真工具
- 批准号:
2411152 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E: data-enabled dynamic microstructural modeling of flowing complex fluids
合作研究:CDS
- 批准号:
2347344 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
III : Medium: Collaborative Research: From Open Data to Open Data Curation
III:媒介:协作研究:从开放数据到开放数据管理
- 批准号:
2420691 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: BoCP-Implementation: Integrating Traits, Phylogenies and Distributional Data to Forecast Risks and Resilience of North American Plants
合作研究:BoCP-实施:整合性状、系统发育和分布数据来预测北美植物的风险和恢复力
- 批准号:
2325835 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: Fusion of Siloed Data for Multistage Manufacturing Systems: Integrative Product Quality and Machine Health Management
协作研究:多级制造系统的孤立数据融合:集成产品质量和机器健康管理
- 批准号:
2323083 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant