Collaborative Research: Reduced Order Modeling of Realistic Noisy Flows
协作研究:现实噪声流的降阶建模
基本信息
- 批准号:1522656
- 负责人:
- 金额:$ 14.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-08-01 至 2018-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Many flows in engineering, geophysics, and medicine pose two significant challenges for computations. First, the computational resources that are available for the numerical simulations can accommodate only low spatial and temporal resolutions. Therefore, standard numerical methods usually yield extremely inaccurate results. To alleviate this, state-of-the-art numerical methods generally use spatial filtering to eliminate the noise (i.e., numerical artifacts). The second challenge posed by these realistic flows is that they require numerous repeated runs (e.g., to determine optimal parameters in automobile design or cardiovascular flow simulation, or to find appropriate initial conditions in weather forecasting and climate modeling). These repeated runs can tremendously increase the computational cost of the numerical simulations. Thus, low cost surrogate models (called reduced-order models) that target only the dominant flow structures are generally used. Combining state-of-the-art data generation methods and reduced-order modeling is required for an accurate and efficient numerical simulation of realistic flows. A simplistic attempt to combine these two approaches is, however, doomed to fail due to numerical instability, noisy data, and modeling inconsistency. This project aims to develop a framework that will transform reduced-order modeling into a robust tool that can tackle the challenges raised by realistic noisy flows in engineering, geophysics, and medicine. The numerical simulation of many realistic flows is fraught with difficulties (insufficient numerical resolution; numerical instability; need for repeated runs). To address these challenges, state-of-the-art numerical approaches are needed: large eddy simulation (LES) and regularized models tackle the lack of numerical resolution and the instability, whereas reduced-order models (ROMs) based on proper orthogonal decomposition (POD) balance the computational cost and accuracy when repeated runs are needed. A simplistic attempt to combine LES and regularized models with standard ROMs is, however, doomed to fail due to the following reasons: (i) standard ROMs are plagued by numerical instability; (ii) although LES and regularized models stabilize the numerical simulations, the data that they generate for ROMs is inherently noisy; and (iii) the modeling inconsistency between data generation (i.e., regularized and LES models) and ROMs can yield inaccurate results. This project will develop a modeling, theoretical, and computational framework that will transform reduced-order modeling into a robust tool that can tackle the challenges raised by realistic noisy flows. The main innovation is the explicit POD spatial filter, which bridges the inconsistency gap between the data generation (i.e., regularized and LES models) and ROMs. This breakthrough paves the way for the development of novel regularized ROMs and the introduction in a ROM setting of genuine LES models that use approximate deconvolution to recover subfilter-scale information. Over the last decades, a wealth of regularized and LES models have been highly developed in the engineering and geophysics communities. The explicit POD spatial filter represents the missing link that finally allows the leverage of these successful approaches in reduced-order modeling.
工程、物理学和医学中的许多流对计算提出了两个重大挑战。 首先,可用于数值模拟的计算资源只能容纳低空间和时间分辨率。 因此,标准的数值方法通常会产生极不准确的结果。 为了减轻这种情况,现有技术的数值方法通常使用空间滤波来消除噪声(即,数值伪影)。 这些现实流所带来的第二个挑战是它们需要多次重复运行(例如,以确定汽车设计或心血管流动模拟中的最佳参数,或者在天气预报和气候建模中找到适当的初始条件)。 这些重复运行会极大地增加数值模拟的计算成本。 因此,通常使用仅以主要流动结构为目标的低成本替代模型(称为降阶模型)。 结合国家的最先进的数据生成方法和降阶建模是需要一个准确和有效的数值模拟的现实流动。 然而,将这两种方法联合收割机结合起来的简单尝试由于数值不稳定、噪声数据和模型不一致而注定要失败。 该项目旨在开发一个框架,将降阶建模转换为一个强大的工具,可以解决工程,物理学和医学中的现实噪声流所带来的挑战。 许多实际流动的数值模拟充满了困难(数值分辨率不足;数值不稳定;需要重复运行)。 为了应对这些挑战,需要最先进的数值方法:大涡模拟(LES)和正则化模型解决了数值分辨率的缺乏和不稳定性,而基于适当正交分解(POD)的降阶模型(ROM)在需要重复运行时平衡了计算成本和精度。 然而,将联合收割机LES和正则化模型与标准ROM组合的简单化尝试由于以下原因而注定失败:(i)标准ROM受到数值不稳定性的困扰;(ii)尽管LES和正则化模型稳定了数值模拟,但是它们为ROM生成的数据固有地有噪声;以及(iii)数据生成之间的建模不一致性(即,正则化和LES模型)和ROM可能产生不准确的结果。 该项目将开发一个建模,理论和计算框架,将降阶建模转换为一个强大的工具,可以解决现实的噪声流所提出的挑战。 主要创新是显式POD空间滤波器,它弥合了数据生成(即,正则化和LES模型)和ROM。 这一突破为开发新型正则化ROM和在ROM设置中引入真正的LES模型铺平了道路,该模型使用近似反卷积来恢复子滤波器尺度信息。 在过去的几十年里,丰富的正则化和LES模型已经在工程和物理学界得到了高度发展。 显式POD空间滤波器代表了最终允许在降阶建模中利用这些成功方法的缺失环节。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Traian Iliescu其他文献
Residual-based data-driven variational multiscale reduced order models for parameter-dependent problems
- DOI:
10.1007/s40314-025-03273-0 - 发表时间:
2025-06-04 - 期刊:
- 影响因子:2.500
- 作者:
Birgul Koc;Samuele Rubino;Tomás Chacón Rebollo;Traian Iliescu - 通讯作者:
Traian Iliescu
Variational multiscale evolve and filter strategies for convection-dominated flows
用于对流主导流动的变分多尺度演化与滤波策略
- DOI:
10.1016/j.cma.2025.117811 - 发表时间:
2025-04-01 - 期刊:
- 影响因子:7.300
- 作者:
Maria Strazzullo;Francesco Ballarin;Traian Iliescu;Tomás Chacón Rebollo - 通讯作者:
Tomás Chacón Rebollo
Traian Iliescu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Traian Iliescu', 18)}}的其他基金
Collaborative Research: Data-Driven Variational Multiscale Reduced Order Models for Biomedical and Engineering Applications
协作研究:用于生物医学和工程应用的数据驱动的变分多尺度降阶模型
- 批准号:
2012253 - 财政年份:2020
- 资助金额:
$ 14.32万 - 项目类别:
Standard Grant
Data-Driven Computation of Lagrangian Transport Structure in Realistic Flows
现实流动中拉格朗日输运结构的数据驱动计算
- 批准号:
1821145 - 财政年份:2018
- 资助金额:
$ 14.32万 - 项目类别:
Continuing Grant
CMG Collaborative Research: Ocean Modeling by Bridging Primitive and Boussinesq Equations
CMG 合作研究:通过连接原始方程和 Boussinesq 方程进行海洋建模
- 批准号:
1025314 - 财政年份:2010
- 资助金额:
$ 14.32万 - 项目类别:
Continuing Grant
CMG Collaborative Research: A New Modeling Framework for Nonhydrostatic Simulations of Small-Scale Oceanic Processes
CMG 协作研究:小规模海洋过程非静水力模拟的新建模框架
- 批准号:
0620464 - 财政年份:2006
- 资助金额:
$ 14.32万 - 项目类别:
Standard Grant
Scientific Computing Research Environment for the Mathematical Sciences (SCREMS)
数学科学科学计算研究环境 (SCREMS)
- 批准号:
0322852 - 财政年份:2003
- 资助金额:
$ 14.32万 - 项目类别:
Standard Grant
Collaborative Research: Three-Dimensional Numerical Investigation of Density Currents
合作研究:密度流的三维数值研究
- 批准号:
0209309 - 财政年份:2002
- 资助金额:
$ 14.32万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Data-Driven Variational Multiscale Reduced Order Models for Biomedical and Engineering Applications
协作研究:用于生物医学和工程应用的数据驱动的变分多尺度降阶模型
- 批准号:
2345048 - 财政年份:2023
- 资助金额:
$ 14.32万 - 项目类别:
Standard Grant
Collaborative Research: Understanding Urban Resilience to Pluvial Floods Using Reduced-Order Modeling
合作研究:使用降阶模型了解城市对洪涝灾害的抵御能力
- 批准号:
2053358 - 财政年份:2022
- 资助金额:
$ 14.32万 - 项目类别:
Standard Grant
Collaborative Research: Understanding Urban Resilience to Pluvial Floods Using Reduced-Order Modeling
合作研究:使用降阶模型了解城市对洪涝灾害的抵御能力
- 批准号:
2053429 - 财政年份:2022
- 资助金额:
$ 14.32万 - 项目类别:
Standard Grant
Collaborative Research: Nonlinear Balancing: Reduced Models and Control
合作研究:非线性平衡:简化模型和控制
- 批准号:
2130695 - 财政年份:2022
- 资助金额:
$ 14.32万 - 项目类别:
Standard Grant
Collaborative Research: Nonlinear Balancing: Reduced Models and Control
合作研究:非线性平衡:简化模型和控制
- 批准号:
2130727 - 财政年份:2022
- 资助金额:
$ 14.32万 - 项目类别:
Standard Grant
Collaborative Research: Multiscale Simulations and Imaging of Viscoelastic Media in Reduced Order Model Framework
协作研究:降阶模型框架中粘弹性介质的多尺度模拟和成像
- 批准号:
2110773 - 财政年份:2021
- 资助金额:
$ 14.32万 - 项目类别:
Standard Grant
Collaborative Research: Development of Reduced Order Models for Poroelasticity and Related Problems
合作研究:孔隙弹性及相关问题的降阶模型的开发
- 批准号:
2110781 - 财政年份:2021
- 资助金额:
$ 14.32万 - 项目类别:
Continuing Grant
Collaborative Research: Development of Reduced Order Models for Poroelasticity and Related Problems
合作研究:孔隙弹性及相关问题的降阶模型的开发
- 批准号:
2110782 - 财政年份:2021
- 资助金额:
$ 14.32万 - 项目类别:
Continuing Grant
Collaborative Research: An Integrated Multiscale Reduced-Order Modeling and Experimental Framework for Lithium-ion Batteries under Mechanical Abuse Conditions
协作研究:机械滥用条件下锂离子电池的集成多尺度降阶建模和实验框架
- 批准号:
2114823 - 财政年份:2021
- 资助金额:
$ 14.32万 - 项目类别:
Standard Grant
CDS&E: Collaborative Research: Surrogates and Reduced Order Modeling for High Dimensional Coupled Systems
CDS
- 批准号:
2053872 - 财政年份:2021
- 资助金额:
$ 14.32万 - 项目类别:
Standard Grant