Scientific Computing Research Environment for the Mathematical Sciences (SCREMS)
数学科学科学计算研究环境 (SCREMS)
基本信息
- 批准号:0322852
- 负责人:
- 金额:$ 10.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-09-01 至 2005-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
ABSTRACTPI: Traian IliescuProposal: 0322852Scientific computing equipment is being requested for rapid solution of large eddy simulation (LES) models. In particular, the investigators study improved boundary conditions for complex engineering flows (one of the main hurdles in the development of LES). Current models suffer from failure to correctly capture subfilter-scale motion in the regions where boundary layer theory is not valid such as recirculation, separated flows, etc. The initial approach is to use approximate deconvolution methods for partial recovery of subfilter scale information. Additionally, the investigators intend to study the role LES may play in the development of reduced-order modeling for state estimation in feedback control. The ability for LES to compute large scale structures efficiently and accurately could be important for the real-time state estimation required for most flow control applications.The investigators intend to develop a scientific computing platform for addressing a number of modeling issues (such as appropriate boundary conditions and convolution kernels) for general three-dimensional turbulent flows. More mathematically sound models will lead to better understanding of flow phenomena such as density currents believed to have a significant influence on global ocean models. Better models are also important for atmospheric models and other geophysical flows. Furthermore, we intend to use this computational platform to address a number of practical optimization and control issues such as the optimal placement of control actuators and flow sensors, and the construction of fast (i.e. near real-time) reduced-order models for fluid systems.
摘要:大涡模拟(LES)模型的快速求解需要科学的计算设备。特别是,研究人员研究了复杂工程流程的改进边界条件(LES发展的主要障碍之一)。在边界层理论不成立的区域,如再循环、分离流等,目前的模型无法正确捕捉子滤波尺度运动。最初的方法是使用近似反卷积方法对子滤波尺度信息进行部分恢复。此外,研究人员打算研究LES在反馈控制中状态估计的降阶建模发展中的作用。LES高效、准确地计算大规模结构的能力对于大多数流量控制应用所需的实时状态估计非常重要。研究人员打算开发一个科学的计算平台,用于解决一般三维湍流的一些建模问题(如适当的边界条件和卷积核)。更多数学上合理的模型将有助于更好地理解诸如密度流之类的流动现象,据信密度流对全球海洋模型有重大影响。更好的模型对大气模型和其他地球物理流也很重要。此外,我们打算使用这个计算平台来解决一些实际的优化和控制问题,如控制执行器和流量传感器的最佳位置,以及流体系统的快速(即近实时)降阶模型的构建。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Traian Iliescu其他文献
Residual-based data-driven variational multiscale reduced order models for parameter-dependent problems
- DOI:
10.1007/s40314-025-03273-0 - 发表时间:
2025-06-04 - 期刊:
- 影响因子:2.500
- 作者:
Birgul Koc;Samuele Rubino;Tomás Chacón Rebollo;Traian Iliescu - 通讯作者:
Traian Iliescu
Variational multiscale evolve and filter strategies for convection-dominated flows
用于对流主导流动的变分多尺度演化与滤波策略
- DOI:
10.1016/j.cma.2025.117811 - 发表时间:
2025-04-01 - 期刊:
- 影响因子:7.300
- 作者:
Maria Strazzullo;Francesco Ballarin;Traian Iliescu;Tomás Chacón Rebollo - 通讯作者:
Tomás Chacón Rebollo
Traian Iliescu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Traian Iliescu', 18)}}的其他基金
Collaborative Research: Data-Driven Variational Multiscale Reduced Order Models for Biomedical and Engineering Applications
协作研究:用于生物医学和工程应用的数据驱动的变分多尺度降阶模型
- 批准号:
2012253 - 财政年份:2020
- 资助金额:
$ 10.77万 - 项目类别:
Standard Grant
Data-Driven Computation of Lagrangian Transport Structure in Realistic Flows
现实流动中拉格朗日输运结构的数据驱动计算
- 批准号:
1821145 - 财政年份:2018
- 资助金额:
$ 10.77万 - 项目类别:
Continuing Grant
Collaborative Research: Reduced Order Modeling of Realistic Noisy Flows
协作研究:现实噪声流的降阶建模
- 批准号:
1522656 - 财政年份:2015
- 资助金额:
$ 10.77万 - 项目类别:
Standard Grant
CMG Collaborative Research: Ocean Modeling by Bridging Primitive and Boussinesq Equations
CMG 合作研究:通过连接原始方程和 Boussinesq 方程进行海洋建模
- 批准号:
1025314 - 财政年份:2010
- 资助金额:
$ 10.77万 - 项目类别:
Continuing Grant
CMG Collaborative Research: A New Modeling Framework for Nonhydrostatic Simulations of Small-Scale Oceanic Processes
CMG 协作研究:小规模海洋过程非静水力模拟的新建模框架
- 批准号:
0620464 - 财政年份:2006
- 资助金额:
$ 10.77万 - 项目类别:
Standard Grant
Collaborative Research: Three-Dimensional Numerical Investigation of Density Currents
合作研究:密度流的三维数值研究
- 批准号:
0209309 - 财政年份:2002
- 资助金额:
$ 10.77万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: CDS&E: An experimentally validated, interactive, data-enabled scientific computing platform for cardiac tissue ablation characterization and monitoring
合作研究:CDS
- 批准号:
2245152 - 财政年份:2023
- 资助金额:
$ 10.77万 - 项目类别:
Standard Grant
Collaborative Research: DOE/NSF Workshop on Correctness in Scientific Computing
合作研究:DOE/NSF 科学计算正确性研讨会
- 批准号:
2319662 - 财政年份:2023
- 资助金额:
$ 10.77万 - 项目类别:
Standard Grant
Collaborative Research: DOE/NSF Workshop on Correctness in Scientific Computing
合作研究:DOE/NSF 科学计算正确性研讨会
- 批准号:
2319661 - 财政年份:2023
- 资助金额:
$ 10.77万 - 项目类别:
Standard Grant
MRI: Track 1 Acquisition of an HPC Cluster for Artificial Intelligence, Machine Learning, Scientific Computing, and Interdisciplinary Research
MRI:第一轨道收购用于人工智能、机器学习、科学计算和跨学科研究的 HPC 集群
- 批准号:
2320735 - 财政年份:2023
- 资助金额:
$ 10.77万 - 项目类别:
Standard Grant
Mathematical Modeling and Scientific Computing for Infectious Disease Research
传染病研究的数学建模和科学计算
- 批准号:
10793008 - 财政年份:2023
- 资助金额:
$ 10.77万 - 项目类别:
Collaborative Research: DOE/NSF Workshop on Correctness in Scientific Computing
合作研究:DOE/NSF 科学计算正确性研讨会
- 批准号:
2319663 - 财政年份:2023
- 资助金额:
$ 10.77万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E: An experimentally validated, interactive, data-enabled scientific computing platform for cardiac tissue ablation characterization and monitoring
合作研究:CDS
- 批准号:
2245153 - 财政年份:2023
- 资助金额:
$ 10.77万 - 项目类别:
Standard Grant
IRES Track I: Advanced Engineering and Scientific Computing Research in Sweden
IRES Track I:瑞典的先进工程和科学计算研究
- 批准号:
2153488 - 财政年份:2022
- 资助金额:
$ 10.77万 - 项目类别:
Standard Grant
Collaborative Research: Using Tutorial-Based Active E-Learning to Broaden Participation and Enhance Scientific Computing Skills in a Seismology Context
协作研究:使用基于教程的主动电子学习来扩大地震学背景下的参与并增强科学计算技能
- 批准号:
2121342 - 财政年份:2021
- 资助金额:
$ 10.77万 - 项目类别:
Standard Grant
Collaborative Research: Using Tutorial-Based Active E-Learning to Broaden Participation and Enhance Scientific Computing Skills in a Seismology Context
协作研究:使用基于教程的主动电子学习来扩大地震学背景下的参与并增强科学计算技能
- 批准号:
2121503 - 财政年份:2021
- 资助金额:
$ 10.77万 - 项目类别:
Standard Grant














{{item.name}}会员




