Collaborative Research: Computational Harmonic Analysis Approach to Active Learning

协作研究:主动学习的计算调和分析方法

基本信息

  • 批准号:
    2012355
  • 负责人:
  • 金额:
    $ 27.04万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

Research in supervised learning is concerned with uncovering relationships between training data and some function or label that is attached to each datum, with the goal of generalizing to new samples. Modern machine learning tools, such as deep networks, typically require a huge set of training data in order to classify the rest of the data with sufficient confidence. Obviously, assigning an accurate label to a datum can be an expensive task, involving a great deal of human effort. This project seeks to develop methods to classify large amounts of data with a theoretically minimal number of training labels. The key to classifying with a small number of labels comes with the ability to choose at which data points a label will be queried. This collaborative research project will study these methods, known as active machine learning, from a geometric and harmonic analysis perspective, focusing on both algorithmic insights and theoretical guarantees. The ability to perform classification with a small number of labeled points has important implications in a variety of applications, including remote sensing classification, medical data analysis, and general applications where it is expensive to collect labels.This project applies knowledge in computational harmonic analysis, function approximation, and machine learning to the study of active learning models, focusing on algorithmic insights, efficient implementations, and performance guarantees for both novel algorithms and currently existing machine learning algorithms. Mathematical tools, including localized kernel construction, approximation analysis in terms of intrinsic dimensionality, and harmonic analysis of eigenfunctions of operators on graphs and manifolds, have natural applications in the study of these areas. Specifically, the project addresses four fundamental questions that arise in the field: (1) How do you conservatively propagate the sampled labels to new points when the labels form a hierarchical clustering with possibly zero minimal separation between clusters? (2) Does the mechanism of kernel active learning generalize to graphs, where naive choice of points to sample becomes a combinatorial optimization problem? (3) Can we incorporate the structure of a neural network (or general parametric) classifier into the choice of labels queried and provably bound the generalization error for predictions on the rest of the data? (4) How can we tailor our framework to transfer learning and high-dimensional imaging?This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
监督学习的研究关注的是发现训练数据和附加到每个数据上的一些函数或标签之间的关系,目标是推广到新的样本。现代机器学习工具,如深度网络,通常需要大量的训练数据集,以便以足够的置信度对其余数据进行分类。显然,为数据分配准确的标签可能是一项昂贵的任务,涉及大量的人力。该项目旨在开发一种方法,用理论上最少数量的训练标签对大量数据进行分类。使用少量标签进行分类的关键在于能够选择在哪个数据点查询标签。该合作研究项目将从几何和谐波分析的角度研究这些被称为主动机器学习的方法,重点关注算法见解和理论保证。使用少量标记点执行分类的能力在各种应用程序中具有重要意义,包括遥感分类、医疗数据分析和收集标签成本较高的一般应用程序。本项目将计算谐波分析、函数近似和机器学习方面的知识应用于主动学习模型的研究,重点关注新算法和现有机器学习算法的算法见解、有效实现和性能保证。数学工具,包括局域核构造、内在维数的近似分析、图和流形上算子的特征函数的调和分析,在这些领域的研究中有自然的应用。具体来说,该项目解决了该领域出现的四个基本问题:(1)当标签形成一个可能为零最小分离的分层聚类时,如何将采样标签保守地传播到新的点?(2)核主动学习的机制是否可以推广到图中,在图中简单地选择点到样本成为一个组合优化问题?(3)我们能否将神经网络(或一般参数)分类器的结构纳入查询标签的选择中,并可证明地约束对其余数据的预测的泛化误差?(4)如何调整我们的框架以适应迁移学习和高维成像?该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Function Approximation Approach to the Prediction of Blood Glucose Levels
预测血糖水平的函数逼近方法
A manifold learning approach for gesture recognition from micro-Doppler radar measurements
  • DOI:
    10.1016/j.neunet.2022.04.024
  • 发表时间:
    2022-05-19
  • 期刊:
  • 影响因子:
    7.8
  • 作者:
    Mason,E. S.;Mhaskar,H. N.;Guo,Adam
  • 通讯作者:
    Guo,Adam
Local approximation of operators
  • DOI:
    10.1016/j.acha.2023.01.004
  • 发表时间:
    2022-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    H. Mhaskar
  • 通讯作者:
    H. Mhaskar
A direct approach for function approximation on data defined manifolds
数据定义流形上函数逼近的直接方法
  • DOI:
    10.1016/j.neunet.2020.08.018
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    7.8
  • 作者:
    Mhaskar, H.N.
  • 通讯作者:
    Mhaskar, H.N.
Cautious active clustering
谨慎主动集群
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hrushikesh Mhaskar其他文献

Why and when can deep-but not shallow-networks avoid the curse of dimensionality: A review
  • DOI:
    10.1007/s11633-017-1054-2
  • 发表时间:
    2017-03-14
  • 期刊:
  • 影响因子:
    8.700
  • 作者:
    Tomaso Poggio;Hrushikesh Mhaskar;Lorenzo Rosasco;Brando Miranda;Qianli Liao
  • 通讯作者:
    Qianli Liao

Hrushikesh Mhaskar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hrushikesh Mhaskar', 18)}}的其他基金

RUI: Localized function approximation based on spectral and scattered data on manifolds
RUI:基于流形上的谱和散射数据的局部函数逼近
  • 批准号:
    0908037
  • 财政年份:
    2009
  • 资助金额:
    $ 27.04万
  • 项目类别:
    Standard Grant
RUI: Multiscale and Modeling of Scattered Data
RUI:分散数据的多尺度和建模
  • 批准号:
    0605209
  • 财政年份:
    2006
  • 资助金额:
    $ 27.04万
  • 项目类别:
    Standard Grant
RUI: Modelling of Scattered Data on Manifolds
RUI:流形上分散数据的建模
  • 批准号:
    0204704
  • 财政年份:
    2002
  • 资助金额:
    $ 27.04万
  • 项目类别:
    Continuing Grant
RUI: Applications of Approximation Theory to Neural Networks and Wavelets
RUI:近似理论在神经网络和小波中的应用
  • 批准号:
    9971846
  • 财政年份:
    1999
  • 资助金额:
    $ 27.04万
  • 项目类别:
    Standard Grant
Mathematical Sciences: RUI: Applications of Wavelet Analysis to Neural Networks
数学科学:RUI:小波分析在神经网络中的应用
  • 批准号:
    9404513
  • 财政年份:
    1994
  • 资助金额:
    $ 27.04万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: CyberTraining: Pilot: PowerCyber: Computational Training for Power Engineering Researchers
协作研究:Cyber​​Training:试点:PowerCyber​​:电力工程研究人员的计算培训
  • 批准号:
    2319895
  • 财政年份:
    2024
  • 资助金额:
    $ 27.04万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
  • 批准号:
    2403122
  • 财政年份:
    2024
  • 资助金额:
    $ 27.04万
  • 项目类别:
    Standard Grant
Collaborative Research: Merging Human Creativity with Computational Intelligence for the Design of Next Generation Responsive Architecture
协作研究:将人类创造力与计算智能相结合,设计下一代响应式架构
  • 批准号:
    2329759
  • 财政年份:
    2024
  • 资助金额:
    $ 27.04万
  • 项目类别:
    Standard Grant
Collaborative Research: Merging Human Creativity with Computational Intelligence for the Design of Next Generation Responsive Architecture
协作研究:将人类创造力与计算智能相结合,设计下一代响应式架构
  • 批准号:
    2329760
  • 财政年份:
    2024
  • 资助金额:
    $ 27.04万
  • 项目类别:
    Standard Grant
Collaborative Research: CyberTraining: Pilot: PowerCyber: Computational Training for Power Engineering Researchers
协作研究:Cyber​​Training:试点:PowerCyber​​:电力工程研究人员的计算培训
  • 批准号:
    2319896
  • 财政年份:
    2024
  • 资助金额:
    $ 27.04万
  • 项目类别:
    Standard Grant
CRCNS US-German Collaborative Research Proposal: Neural and computational mechanisms of flexible goal-directed decision making
CRCNS 美德合作研究提案:灵活目标导向决策的神经和计算机制
  • 批准号:
    2309022
  • 财政年份:
    2024
  • 资助金额:
    $ 27.04万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
  • 批准号:
    2403123
  • 财政年份:
    2024
  • 资助金额:
    $ 27.04万
  • 项目类别:
    Standard Grant
Collaborative Research: Merging Human Creativity with Computational Intelligence for the Design of Next Generation Responsive Architecture
协作研究:将人类创造力与计算智能相结合,设计下一代响应式架构
  • 批准号:
    2329758
  • 财政年份:
    2024
  • 资助金额:
    $ 27.04万
  • 项目类别:
    Standard Grant
Collaborative Research: Elements: ProDM: Developing A Unified Progressive Data Management Library for Exascale Computational Science
协作研究:要素:ProDM:为百亿亿次计算科学开发统一的渐进式数据管理库
  • 批准号:
    2311757
  • 财政年份:
    2023
  • 资助金额:
    $ 27.04万
  • 项目类别:
    Standard Grant
Collaborative Research: Arecibo C3 - Center for Culturally Relevant and Inclusive Science Education, Computational Skills, and Community Engagement
合作研究:Arecibo C3 - 文化相关和包容性科学教育、计算技能和社区参与中心
  • 批准号:
    2321759
  • 财政年份:
    2023
  • 资助金额:
    $ 27.04万
  • 项目类别:
    Cooperative Agreement
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了