RUI: Modelling of Scattered Data on Manifolds

RUI:流形上分散数据的建模

基本信息

项目摘要

DMS Award AbstractAward #: 0204704PI: Mhaskar, HrushikeshInstitution: California State University Los AngelesProgram: Applied MathematicsProgram Manager: Catherine MavriplisTitle: RUI: Modelling of Scattered Data on ManifoldsThe proposer will continue his research on the modelling and analysis of scattered data on the sphere and other manifolds. For the analysis of data, he will develop frames having small or compact supports, and having dual frames with other desirable properties. The proposer will study the optimal representation of functions on the manifolds using finitely many bits, rather than real coefficients, and develop algorithms for these representations based on scattered data. An important new mathematical tool in this study will be quadrature formulas with positive weights based on data near (rather than on) the manifolds, and local quadrature formulas based on data near parts of the manifolds. The research is expected to have applications in the areas of signal processing, analysis of satellite data, and the study of development of tumors.The problem of approximation of functions on the sphere is a very old one; among the early workers in this area was Gauss. It arises naturally in geodesic studies, for example, the study of the environment, and variations in the gravitational and electromagnetic fields around the earth. The data taken from a satellite is most naturally modelled as a function on the sphere. Additional applications arise in mathematical biology, where the growth of a tumor is modelled by a system of differential equations satisfied by functions on a sphere, which need to be approximated efficiently and accurately in real time. Many recent applications require a study of functions on slight perturbations of the sphere. For example, the data from the satellite may be taken not from the surface of the earth itself (which is not perfectly spherical either), but from different heights above the surface. Similarly, in biological applications, a tumor which may be initially assumed spherical, no longer remains so after its evolution. The proposer will study the analysis and modelling of data collected at arbitrary sites on a nearly spherical manifold, using ideas from wavelet analysis and metric entropy. Date: June 18, 2002
DMS Award AbstractAward #: 0204704 PI: Mhaskar,Hrushikesh机构: 加州州立大学洛杉矶分校课程: 应用数学项目经理:Catherine Mavriplis职务:- 我知道流形上散乱数据的建模提议者将继续研究球面和其他流形上散乱数据的建模和分析。为了分析数据,他将开发具有小型或紧凑支撑的框架,以及具有其他理想特性的双框架。提议者将研究流形上函数的最佳表示,使用多个位,而不是真实的系数,并开发基于分散数据的这些表示的算法。 在这项研究中,一个重要的新的数学工具将是正交公式与正权重的基础上的数据附近(而不是上)的流形,和局部求积公式的基础上的数据附近的部分流形。该研究有望在信号处理、卫星数据分析和肿瘤发展研究等领域得到应用。问题的近似函数的领域是一个非常古老的,其中早期的工人在这方面是高斯。它自然地出现在测地线研究中,例如,环境研究,以及地球周围引力场和电磁场的变化。从卫星获取的数据最自然地被建模为球体上的函数。在数学生物学中出现了其他应用,其中肿瘤的生长由球上的函数所满足的微分方程系统建模,该系统需要在真实的时间内有效且准确地近似。最近的许多应用需要研究的功能轻微扰动的领域。例如,来自卫星的数据可能不是从地球表面本身(地球表面也不是完美的球形)获取的,而是从表面以上的不同高度获取的。类似地,在生物学应用中,最初可能被假定为球形的肿瘤在其演变之后不再保持球形。提议者将利用小波分析和度量熵的思想,研究在近球形流形上任意地点收集的数据的分析和建模。日期:二○ ○二年六月十八日

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hrushikesh Mhaskar其他文献

Why and when can deep-but not shallow-networks avoid the curse of dimensionality: A review
  • DOI:
    10.1007/s11633-017-1054-2
  • 发表时间:
    2017-03-14
  • 期刊:
  • 影响因子:
    8.700
  • 作者:
    Tomaso Poggio;Hrushikesh Mhaskar;Lorenzo Rosasco;Brando Miranda;Qianli Liao
  • 通讯作者:
    Qianli Liao

Hrushikesh Mhaskar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hrushikesh Mhaskar', 18)}}的其他基金

Collaborative Research: Computational Harmonic Analysis Approach to Active Learning
协作研究:主动学习的计算调和分析方法
  • 批准号:
    2012355
  • 财政年份:
    2020
  • 资助金额:
    $ 11.48万
  • 项目类别:
    Standard Grant
RUI: Localized function approximation based on spectral and scattered data on manifolds
RUI:基于流形上的谱和散射数据的局部函数逼近
  • 批准号:
    0908037
  • 财政年份:
    2009
  • 资助金额:
    $ 11.48万
  • 项目类别:
    Standard Grant
RUI: Multiscale and Modeling of Scattered Data
RUI:分散数据的多尺度和建模
  • 批准号:
    0605209
  • 财政年份:
    2006
  • 资助金额:
    $ 11.48万
  • 项目类别:
    Standard Grant
RUI: Applications of Approximation Theory to Neural Networks and Wavelets
RUI:近似理论在神经网络和小波中的应用
  • 批准号:
    9971846
  • 财政年份:
    1999
  • 资助金额:
    $ 11.48万
  • 项目类别:
    Standard Grant
Mathematical Sciences: RUI: Applications of Wavelet Analysis to Neural Networks
数学科学:RUI:小波分析在神经网络中的应用
  • 批准号:
    9404513
  • 财政年份:
    1994
  • 资助金额:
    $ 11.48万
  • 项目类别:
    Standard Grant

相似国自然基金

Improving modelling of compact binary evolution.
  • 批准号:
    10903001
  • 批准年份:
    2009
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

M2DESCO - Computational Multimode Modelling Enabled Design of Safe & Sustainable Multi-Component High-Entropy Coatings
M2DESCO - 计算多模式建模支持安全设计
  • 批准号:
    10096988
  • 财政年份:
    2024
  • 资助金额:
    $ 11.48万
  • 项目类别:
    EU-Funded
SMILE - Semantic Modelling of Intent through Large-language Evaluations
SMILE - 通过大语言评估进行意图语义建模
  • 批准号:
    10097766
  • 财政年份:
    2024
  • 资助金额:
    $ 11.48万
  • 项目类别:
    Collaborative R&D
Advanced Modelling Platform with Moving Ventricular Walls for Increasing Speed to Market of Heart Pumps
具有移动心室壁的先进建模平台可加快心脏泵的上市速度
  • 批准号:
    10071797
  • 财政年份:
    2024
  • 资助金额:
    $ 11.48万
  • 项目类别:
    Collaborative R&D
Domino - Computational Fluid Dynamics Modelling of Ink Droplet Breakup for Mitigating Mist Formation during inkjet printing
Domino - 墨滴破碎的计算流体动力学模型,用于减轻喷墨打印过程中的雾气形成
  • 批准号:
    10090067
  • 财政年份:
    2024
  • 资助金额:
    $ 11.48万
  • 项目类别:
    Collaborative R&D
Macroeconomic and Financial Modelling in an Era of Extremes
极端时代的宏观经济和金融模型
  • 批准号:
    DP240101009
  • 财政年份:
    2024
  • 资助金额:
    $ 11.48万
  • 项目类别:
    Discovery Projects
Population genomic methods for modelling bacterial pathogen evolution
用于模拟细菌病原体进化的群体基因组方法
  • 批准号:
    DE240100316
  • 财政年份:
    2024
  • 资助金额:
    $ 11.48万
  • 项目类别:
    Discovery Early Career Researcher Award
PIDD-MSK: Physics-Informed Data-Driven Musculoskeletal Modelling
PIDD-MSK:物理信息数据驱动的肌肉骨骼建模
  • 批准号:
    EP/Y027930/1
  • 财政年份:
    2024
  • 资助金额:
    $ 11.48万
  • 项目类别:
    Fellowship
FLF Next generation atomistic modelling for medicinal chemistry and biology
FLF 下一代药物化学和生物学原子建模
  • 批准号:
    MR/Y019601/1
  • 财政年份:
    2024
  • 资助金额:
    $ 11.48万
  • 项目类别:
    Fellowship
Modelling the impact of geomagnetically induced currents on UK railways
模拟地磁感应电流对英国铁路的影响
  • 批准号:
    NE/Y001176/1
  • 财政年份:
    2024
  • 资助金额:
    $ 11.48万
  • 项目类别:
    Research Grant
Hybrid AI and multiscale physical modelling for optimal urban decarbonisation combating climate change
混合人工智能和多尺度物理建模,实现应对气候变化的最佳城市脱碳
  • 批准号:
    EP/X029093/1
  • 财政年份:
    2024
  • 资助金额:
    $ 11.48万
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了