RUI: Applications of Approximation Theory to Neural Networks and Wavelets
RUI:近似理论在神经网络和小波中的应用
基本信息
- 批准号:9971846
- 负责人:
- 金额:$ 12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-07-15 至 2003-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Mhaskar will continue his investigations on the complexity problem inthe theory of neural networks and construction of multiscales based onorthogonal polynomial coefficients as well as samples of the targetfunctions. Variations of such classical methods from approximationtheory as summability methods and polynomial inequalities will bedeveloped to provide a unified theory of these apparently diverse areas.The work will be applied to the numerical construction of orthogonalpolynomials, approximation on the sphere using scattered data, and thetheory of system identification.Although approximation theory is a classical area of mathematics, activefor more than a hundred years, technological progress in the areas ofneural networks and wavelets has given rise to many new possibilitiesfor applications of approximation theory. Neural networks and waveletsare both useful in high speed parallel computing, and naturally involvethe approximation of functions. Approximation theory techniques usedwith neural networks have produced dramatically better results incertain applications to array antenna technology, pattern recognition,and financial time series prediction.
Mhaskar将继续他的调查复杂性问题的理论神经网络和建设多尺度的基础上正交多项式系数以及样本的目标功能。近似理论的经典方法的变体,如求和方法和多项式不等式,将被发展为这些明显不同的领域提供一个统一的理论。这项工作将被应用于正交多项式的数值构造,使用离散数据的球面近似,以及系统识别理论。虽然近似理论是数学的经典领域,活跃了一百多年,神经网络和小波领域的技术进步为逼近理论的应用带来了许多新的可能性。神经网络和小波都适用于高速并行计算,并且自然涉及函数的逼近。近似理论技术与神经网络一起使用,在阵列天线技术、模式识别和金融时间序列预测的某些应用中产生了明显更好的结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hrushikesh Mhaskar其他文献
Why and when can deep-but not shallow-networks avoid the curse of dimensionality: A review
- DOI:
10.1007/s11633-017-1054-2 - 发表时间:
2017-03-14 - 期刊:
- 影响因子:8.700
- 作者:
Tomaso Poggio;Hrushikesh Mhaskar;Lorenzo Rosasco;Brando Miranda;Qianli Liao - 通讯作者:
Qianli Liao
Hrushikesh Mhaskar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hrushikesh Mhaskar', 18)}}的其他基金
Collaborative Research: Computational Harmonic Analysis Approach to Active Learning
协作研究:主动学习的计算调和分析方法
- 批准号:
2012355 - 财政年份:2020
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
RUI: Localized function approximation based on spectral and scattered data on manifolds
RUI:基于流形上的谱和散射数据的局部函数逼近
- 批准号:
0908037 - 财政年份:2009
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
RUI: Multiscale and Modeling of Scattered Data
RUI:分散数据的多尺度和建模
- 批准号:
0605209 - 财政年份:2006
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
RUI: Modelling of Scattered Data on Manifolds
RUI:流形上分散数据的建模
- 批准号:
0204704 - 财政年份:2002
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
Mathematical Sciences: RUI: Applications of Wavelet Analysis to Neural Networks
数学科学:RUI:小波分析在神经网络中的应用
- 批准号:
9404513 - 财政年份:1994
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
相似国自然基金
Applications of AI in Market Design
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研 究基金项目
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
相似海外基金
Development of a novel best approximation theory with applications
开发一种新颖的最佳逼近理论及其应用
- 批准号:
DP230102079 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Discovery Projects
Developments and Applications of Numerical Verification Methods for Finite Element Approximation of Differential Equations
微分方程有限元逼近数值验证方法的发展与应用
- 批准号:
23K03232 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Diophantine approximation, related problems, and applications to the existence or non-existence of arithmetic progressions
丢番图近似、相关问题以及算术级数存在或不存在的应用
- 批准号:
22KJ0375 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Applications of Sparse Representation, Low Rank Approximation and Dictionary Learning to Image Processing, Pattern Recognition and Computer Vision
稀疏表示、低秩近似和字典学习在图像处理、模式识别和计算机视觉中的应用
- 批准号:
RGPIN-2016-05467 - 财政年份:2021
- 资助金额:
$ 12万 - 项目类别:
Discovery Grants Program - Individual
LEAPS-MPS: Advancing Approximation of Heterogeneous Multi-Objective Set Covering Problems with Modeling and Applications
LEAPS-MPS:通过建模和应用推进异构多目标集覆盖问题的逼近
- 批准号:
2137622 - 财政年份:2021
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Roots of Polynomials over Infinite Rings with Applications to Cryptography: Investigating Solvability of and Approximation Tools for Polynomial Roots and the Error Bounds of Approximations Used in Rep
无限环上多项式的根及其在密码学中的应用:研究多项式根的可解性和近似工具以及表示中使用的近似的误差界
- 批准号:
544226-2019 - 财政年份:2021
- 资助金额:
$ 12万 - 项目类别:
Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Collaborative Research: CNS CORE: Medium: A Unified Prefetch Framework for Approximation Tolerant Interactive Applications
协作研究:CNS CORE:Medium:用于近似容忍交互式应用程序的统一预取框架
- 批准号:
2106197 - 财政年份:2021
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Medium: A Unified Prefetch Framework for Approximation-Tolerant Interactive Applications
合作研究:CNS Core:Medium:用于近似容忍交互式应用程序的统一预取框架
- 批准号:
2140552 - 财政年份:2021
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Medium: A Unified Prefetch Framework for Approximation-Tolerant Interactive Applications
合作研究:CNS Core:Medium:用于近似容忍交互式应用程序的统一预取框架
- 批准号:
2105773 - 财政年份:2021
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Approximation theory for two-level value functions with applications
两级值函数的逼近理论及其应用
- 批准号:
EP/V049038/1 - 财政年份:2021
- 资助金额:
$ 12万 - 项目类别:
Research Grant