RUI: Computational Models for Coupled Free/Porous Media Flow
RUI:耦合自由/多孔介质流的计算模型
基本信息
- 批准号:2012371
- 负责人:
- 金额:$ 16.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project will study fluid flow models with applications in human health and the environment. The focus is on models that combine a free fluid part and a porous media part. For example, in physiology, such fluid flow models help to understand transport of oxygen and nutrients between blood vessels and tissue. In hydrology, such models can be used to study and predict contamination by toxic chemicals from leaky underground storage tanks or landfills mixing with groundwater. In industrial filtration, the flow models studied in this project can be incorporated into more complex models to optimize the design of the three-way catalytic converter used to reduce vehicle emission levels. Efficient computer simulation of these coupled free/porous flows remains challenging due to the multi-physics nature of the systems. This research aims to develop accurate and efficient numerical simulation techniques for such models. The project provides training through undergraduate research experiences.This project studies models of coupled flow systems using the incompressible Stokes equations in the free domain and the Darcy equations in the porous domain. An advection-diffusion equation is added to the system to model the transport phenomena at the free/porous interface. The research aims to develop, analyze, and implement an integrated numerical model of this system of equations in three dimensions. The main goals are to (i) address severe limitations of the direct solution, due to incompatibilities in the differential operators in the free and porous subdomains, (ii) develop robust, high accuracy, and well-conditioned integral equation formulations, (iii) apply rigorous analysis on the iterative methods to deduce optimal convergence, and (iv) add the ability to combine different methods of discretization to effectively model heterogeneous porous media. The project will develop a new boundary integral formulation, with regularization and correction for high accuracy, and a simple quadrature based on implicit representation of the surface. Efficient domain decomposition methods with new transmission conditions based on non-local operators will be used to speed up the iteration process. High-performance computing techniques and a kernel-independent treecode algorithm will be implemented to increase the speed of computations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将研究流体流动模型及其在人类健康和环境中的应用。重点放在结合了自由流体部分和多孔介质部分的模型上。例如,在生理学中,这种流体流动模型有助于了解氧气和营养物质在血管和组织之间的传输。在水文学中,这样的模型可以用来研究和预测地下储油罐泄漏或垃圾填埋场与地下水混合产生的有毒化学物质的污染。在工业过滤中,本项目中研究的流动模型可以整合到更复杂的模型中,以优化用于降低车辆排放水平的三效催化转化器的设计。由于系统的多物理性质,对这些自由/多孔耦合流动的有效计算机模拟仍然具有挑战性。本研究旨在为此类模型开发准确、高效的数值模拟技术。该项目通过本科生的研究经验提供培训。该项目使用自由域中的不可压缩Stokes方程和多孔域中的Darcy方程来研究耦合流动系统的模型。在系统中加入了一个对流扩散方程来模拟自由/多孔界面上的输运现象。这项研究旨在开发、分析和实现这一方程组的三维综合数值模型。主要目标是(I)解决由于自由和多孔子区域中的微分算子不兼容而导致的直接解的严重局限性,(Ii)开发健壮、高精度和条件良好的积分方程式,(Iii)对迭代方法进行严格的分析以推导出最优收敛,以及(Iv)增加组合不同的离散化方法以有效地模拟非均质多孔介质的能力。该项目将开发一种新的边界积分公式,具有正则化和高精度的校正,以及基于曲面隐式表示的简单求积。基于非局部算子的新传输条件下的高效区域分解方法将被用来加快迭代过程。将实施高性能计算技术和独立于内核的树码算法来提高计算速度。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Effect of Global Smoothness on the Accuracy of Treecodes
全局平滑度对树代码准确性的影响
- DOI:10.4208/cicp.oa-2022-0153
- 发表时间:2022
- 期刊:
- 影响因子:3.7
- 作者:null, Henry A.;Tlupova, Svetlana
- 通讯作者:Tlupova, Svetlana
A novel regularization for higher accuracy in the solution of the 3-dimensional Stokes flow
一种新颖的正则化方法可提高 3 维斯托克斯流求解的精度
- DOI:10.2140/involve.2022.15.515
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Beale, J. Thomas;Jones, Christina;Reale, Jillian;Tlupova, Svetlana
- 通讯作者:Tlupova, Svetlana
A domain decomposition solution of the Stokes-Darcy system in 3D based on boundary integrals
- DOI:10.1016/j.jcp.2021.110824
- 发表时间:2021-10
- 期刊:
- 影响因子:0
- 作者:Svetlana Tlupova
- 通讯作者:Svetlana Tlupova
A treecode algorithm based on tricubic interpolation
一种基于三次插值的树码算法
- DOI:10.1016/j.jcmds.2022.100068
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Boateng, Henry A.;Tlupova, Svetlana
- 通讯作者:Tlupova, Svetlana
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Svetlana Tlupova其他文献
The adjoint double layer potential on smooth surfaces in $$\mathbb {R}^3$$ and the Neumann problem
- DOI:
10.1007/s10444-024-10111-0 - 发表时间:
2024-04-19 - 期刊:
- 影响因子:2.100
- 作者:
J. Thomas Beale;Michael Storm;Svetlana Tlupova - 通讯作者:
Svetlana Tlupova
A small-scale decomposition for 3D boundary integral computations with surface tension
具有表面张力的 3D 边界积分计算的小规模分解
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:4.1
- 作者:
D. Ambrose;M. Siegel;Svetlana Tlupova - 通讯作者:
Svetlana Tlupova
Nearly Singular Integrals in 3D Stokes Flow
3D 斯托克斯流中的近奇异积分
- DOI:
10.4208/cicp.020812.080213a - 发表时间:
2013 - 期刊:
- 影响因子:3.7
- 作者:
Svetlana Tlupova;J. Beale - 通讯作者:
J. Beale
Regularized single and double layer integrals in 3D Stokes flow
3D Stokes 流中的正则化单层和双层积分
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:4.1
- 作者:
Svetlana Tlupova;J. Beale - 通讯作者:
J. Beale
A Treecode Algorithm for 3D Stokeslets and Stresslets
3D Stokeslet 和 Stresslet 的 Treecode 算法
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:1.4
- 作者:
Lei Wang;Svetlana Tlupova;R. Krasny - 通讯作者:
R. Krasny
Svetlana Tlupova的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Computational Multi-Models Enabled Design of Safe & Sustainable Multi-Component High-Entropy Coatings (M2DESCO)
计算多模型支持安全设计
- 批准号:
10110861 - 财政年份:2024
- 资助金额:
$ 16.01万 - 项目类别:
EU-Funded
CRII: AF: RUI: Algorithmic Fairness for Computational Social Choice Models
CRII:AF:RUI:计算社会选择模型的算法公平性
- 批准号:
2348275 - 财政年份:2024
- 资助金额:
$ 16.01万 - 项目类别:
Standard Grant
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
- 批准号:
2825967 - 财政年份:2023
- 资助金额:
$ 16.01万 - 项目类别:
Studentship
Conference: SICB 2024: Computational and Physical Models in Research and Teaching to Explore Form-Function Relationships
会议:SICB 2024:研究和教学中的计算和物理模型探索形式-功能关系
- 批准号:
2326876 - 财政年份:2023
- 资助金额:
$ 16.01万 - 项目类别:
Standard Grant
Novel Hybrid Computational Models to Disentangle Complex Immune Responses
新型混合计算模型可解开复杂的免疫反应
- 批准号:
10794448 - 财政年份:2023
- 资助金额:
$ 16.01万 - 项目类别:
Informing 4D flow MRI haemodynamic outputs with data science, mathematical models and scale-resolving computational fluid dynamics
通过数据科学、数学模型和尺度解析计算流体动力学为 4D 流 MRI 血液动力学输出提供信息
- 批准号:
EP/X028321/1 - 财政年份:2023
- 资助金额:
$ 16.01万 - 项目类别:
Fellowship
Integrating Computational and Experimental Models to Predict Toxicity of the Pancreas
整合计算和实验模型来预测胰腺的毒性
- 批准号:
10576042 - 财政年份:2023
- 资助金额:
$ 16.01万 - 项目类别:
Computational fluid dynamics analysis using sophisticated plant models towards the development of digital twins in greenhouse horticulture
使用复杂的植物模型进行计算流体动力学分析,以开发温室园艺中的数字孪生
- 批准号:
23K05477 - 财政年份:2023
- 资助金额:
$ 16.01万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Data models for large aircraft aerodynamics using next-generation computational fluid dynamics
使用下一代计算流体动力学的大型飞机空气动力学数据模型
- 批准号:
2889801 - 财政年份:2023
- 资助金额:
$ 16.01万 - 项目类别:
Studentship
Open-source Software Development Supplement for 3D quantitative analysisof mouse models of structural birth defects through computational anatomy
通过计算解剖学对结构性出生缺陷小鼠模型进行 3D 定量分析的开源软件开发补充
- 批准号:
10839199 - 财政年份:2023
- 资助金额:
$ 16.01万 - 项目类别: