Statistical Inference Based on Data Tilting

基于数据倾斜的统计推断

基本信息

  • 批准号:
    0403443
  • 负责人:
  • 金额:
    $ 8.56万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-06-01 至 2007-05-31
  • 项目状态:
    已结题

项目摘要

The investigator studies three subjects: extreme valuetheory, ARCH/GARCH models, and nonparametric regression with censoreddata. The particular issues examined in this proposal include:1) constructing confidence intervals for high quantilesin risk management; 2) constructing confidence intervalsfor the difference of two means with heavy tails; 3)constructing confidence intervals for parameters in ARCH/GARCHmodels; 4) constructing a confidence interval for the maximalmoment exponent of a GARCH (1,1) sequence; 5) forecasting the1-step ahead conditional Value-at-Risk based on GARCH models;6) applying the data tilting method to obtain confidenceintervals for the tail index of a double autoregressive model;and 7) applying the data tilting method to obtain confidenceintervals for a conditional survival function with censored data.The proposed activity described above involvesnovel applications of data tilting methods. The researchapproach is a combination of theoretical asymptotic analysis,Monte Carlo simulation and real data analysis.The problems studied in this project arise from real applications in various fields includingmeteorology, hydrology, insurance, andfinance. Examples are: in the design of electricaldistribution systems and buildings, the extremes of wind pressure loading must be accounted for;insurers who underwrite the financial risk associated with natural risks like floods, storms and earthquakes must have good estimates of the size and impact of extreme events inorder to set their premiums at a profitable level.This project studies the following issues: modeling extremeevents; predicting Value-at-Risk in riskmanagement; estimating frontier functions for comparing the performance of different firms; estimating parametersof volatility models in financial time series; and estimating theconditional life time in assessing the influence of risk factorson survival. Progress in this project can enhancethe interaction among several areas in statistical science, includingextreme value theory, nonparametric smoothing, time series analysis,and survival analysis. The new methods to be developedcan be applied to financial time series, sea level prediction,internet traffic data, medical data, to name a few. Thetheoretical asymptotic results to be developed are expected to havebroader applications as well.
研究者研究三个主题:极值理论,GARCH/GARCH模型,和删失数据的非参数回归。本文研究的具体问题包括:1)风险管理中高分位数的置信区间的构造; 2)重尾均值差的置信区间的构造; 3)GARCH/GARCH模型参数的置信区间的构造; 4)GARCH(1,1)序列最大矩指数的置信区间的构造; 5)基于GARCH模型预测一步前条件风险值(Value-at-Risk):6)应用数据倾斜方法获得双自回归模型尾部指标的置信区间;以及7)应用数据倾斜方法获得删失数据条件生存函数的置信区间。上述活动涉及数据倾斜方法的新应用。本课题的研究方法是理论渐近分析、蒙特卡罗模拟和真实的数据分析相结合的方法,所研究的问题来自气象、水文、保险、金融等领域的真实的应用。 示例如下:在配电系统和建筑物的设计中,必须考虑到极端的风压负荷,承保洪水、风暴和地震等自然风险的保险公司必须对极端事件的规模和影响有很好的估计,以便将其保费定在盈利水平。本文的主要研究内容包括:金融时间序列中波动率模型的参数估计;风险因素对生存影响的一致性寿命估计。 该项目的进展可以增强统计科学中几个领域之间的相互作用,包括极值理论,非参数平滑,时间序列分析和生存分析。 新的方法可以应用于金融时间序列,海平面预测,互联网流量数据,医疗数据,仅举几例。所得到的理论渐近结果也可望有更广泛的应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Liang Peng其他文献

A systematic mapping study on crowdsourced requirements engineering using user feedback
利用用户反馈进行众包需求工程的系统映射研究
Genetic diversity in intraspecific hybrid populations of Eucommia ulmoides Oliver evaluated from ISSR and SRAP molecular marker analysis.
通过ISSR和SRAP分子标记分析评估杜仲种内杂种群体的遗传多样性。
  • DOI:
    10.4238/2015.july.3.17
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0.4
  • 作者:
    Jing Yu;Yang Wang;Mei Ru;Liang Peng;Zhanfeng Liang
  • 通讯作者:
    Zhanfeng Liang
Upcycling contaminated biomass into metal-supported heterogeneous catalyst for electro-Fenton degradation of thiamethoxam: Preparation, mechanisms, and implications
将受污染的生物质升级改造为金属负载的多相催化剂,用于电芬顿降解噻虫嗪:制备、机制和影响
  • DOI:
    10.1016/j.cej.2022.139814
  • 发表时间:
    2022-10
  • 期刊:
  • 影响因子:
    15.1
  • 作者:
    Youzheng Chai;Ma Bai;Anwei Chen;Xiyan Xu;Zhaohui Tong;Jiayi Yuan;Liang Peng;Jihai Shao;Jiahao Xiong;Cheng Peng
  • 通讯作者:
    Cheng Peng
MnO2 polymorphs for catalytic carboxylation of 1-butanamine by CO2
用于 CO2 催化 1-丁胺羧化的 MnO2 多晶型物
  • DOI:
    10.1016/j.jcou.2021.101525
  • 发表时间:
    2021-06
  • 期刊:
  • 影响因子:
    7.7
  • 作者:
    Dalei Sun;Liang Peng;Yating Yang;Jiahui Ye;Yanxiong Fang;San Ping Jiang;Zongping Shao
  • 通讯作者:
    Zongping Shao
Differential Proteomics Analysis of Penaeus vannamei Muscles with Quality Characteristics by TMT Quantitative Proteomics during Low-Temperature Storage
利用TMT定量蛋白质组学方法对南美白对虾低温储存过程中肌肉质量特性进行差异蛋白质组学分析

Liang Peng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Liang Peng', 18)}}的其他基金

Collaborative Proposal: Models and Methods for High Quantiles in Risk Quantification and Management
合作提案:风险量化和管理中高分位数的模型和方法
  • 批准号:
    2012448
  • 财政年份:
    2020
  • 资助金额:
    $ 8.56万
  • 项目类别:
    Standard Grant
Participant Support for the 8th Conference on Extreme Value Analysis
第八届极值分析会议与会者支持
  • 批准号:
    1258701
  • 财政年份:
    2013
  • 资助金额:
    $ 8.56万
  • 项目类别:
    Standard Grant
Collaborative Research: Reducing Computation in Empirical Likelihood Methods
协作研究:减少经验似然法的计算量
  • 批准号:
    1005336
  • 财政年份:
    2010
  • 资助金额:
    $ 8.56万
  • 项目类别:
    Standard Grant
Collaborative Research: Copulas, Tail Copulas, Garch and Extreme Values in Dependence Modelling and Risk Management
合作研究:依赖建模和风险管理中的 Copulas、Tail Copulas、Garch 和极值
  • 批准号:
    0631608
  • 财政年份:
    2006
  • 资助金额:
    $ 8.56万
  • 项目类别:
    Standard Grant

相似海外基金

Statistical Procedures and Performance Measures for Simulator-Based Frequentist Inference
基于模拟器的频率推理的统计程序和性能测量
  • 批准号:
    2053804
  • 财政年份:
    2021
  • 资助金额:
    $ 8.56万
  • 项目类别:
    Standard Grant
International Indian Statistical Association 2020 Conference: Statistics in the Era of Evidence-Based Inference
国际印度统计协会2020年会议:循证推理时代的统计
  • 批准号:
    2020407
  • 财政年份:
    2020
  • 资助金额:
    $ 8.56万
  • 项目类别:
    Standard Grant
A study on statistical inference and survival analysis based on algebraic and geometric structures
基于代数和几何结构的统计推断和生存分析研究
  • 批准号:
    20K19752
  • 财政年份:
    2020
  • 资助金额:
    $ 8.56万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Black-Box Science: Ideas and Insights for Learning-Based Statistical Inference
黑盒科学:基于学习的统计推断的想法和见解
  • 批准号:
    2015400
  • 财政年份:
    2020
  • 资助金额:
    $ 8.56万
  • 项目类别:
    Continuing Grant
Statistical inference and uncertainty quantification for complex process-based models using multiple data sets
使用多个数据集对基于过程的复杂模型进行统计推断和不确定性量化
  • 批准号:
    NE/T00973X/1
  • 财政年份:
    2020
  • 资助金额:
    $ 8.56万
  • 项目类别:
    Research Grant
Statistical inference based on complex survey designs using rank information and order statistics
使用排名信息和顺序统计数据基于复杂的调查设计进行统计推断
  • 批准号:
    RGPIN-2015-04157
  • 财政年份:
    2019
  • 资助金额:
    $ 8.56万
  • 项目类别:
    Discovery Grants Program - Individual
New developments of extreme value theory based on monitoring data and its statistical inference
基于监测数据的极值理论及其统计推断的新进展
  • 批准号:
    19K04890
  • 财政年份:
    2019
  • 资助金额:
    $ 8.56万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Statistical Inference Based on Real-World-Data
基于真实世界数据的统计推断
  • 批准号:
    19H04072
  • 财政年份:
    2019
  • 资助金额:
    $ 8.56万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Statistical inference based on complex survey designs using rank information and order statistics
使用排名信息和顺序统计数据基于复杂的调查设计进行统计推断
  • 批准号:
    RGPIN-2015-04157
  • 财政年份:
    2018
  • 资助金额:
    $ 8.56万
  • 项目类别:
    Discovery Grants Program - Individual
Genealogical-based inference in statistical genetics
统计遗传学中基于谱系的推断
  • 批准号:
    435822-2013
  • 财政年份:
    2018
  • 资助金额:
    $ 8.56万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了