Scalable Computational Methods for Large-Scale Stochastic Optimization under High-Dimensional Uncertainty
高维不确定性下大规模随机优化的可扩展计算方法
基本信息
- 批准号:2012453
- 负责人:
- 金额:$ 31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2022-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Large-scale simulation in computational science and engineering is often carried out not only to obtain insight about a system, but also as a basis for decision-making. When the decision variables represent the design or control of an engineered or natural system, and the system is governed by partial differential equations (PDEs) with uncertain input due to lack of knowledge or intrinsic variability, the task of determining the optimal design or control leads to a PDE-constrained stochastic optimization problem. Such problems abound across all areas of science and engineering. Examples include optimal control of subsurface flows, plasma fusion reactors, and chemical and materials processes; optimal structural design of aerospace, automotive, and civil infrastructure systems; and shape, layout, or topology optimization of biomedical, electronic, and nano-structured devices. There are several critical challenges in solving such problems including high dimensionality stemming from uncertainty and/or optimization variable spaces, and the need to solve large-scale PDEs with numerous samples of the uncertain parameters. This project will develop, analyze, and implement scalable computational methods to make tractable the solution of large-scale PDE-constrained stochastic optimization problems under high-dimensional uncertainty. These methods will be applied to subsurface flow problems with societal impact; software will be developed and disseminated widely in open source form. Graduate students will be involved and will receive interdisciplinary training. This project exploits the intrinsic structure of the stochastic optimization problems--in particular the intrinsic low dimensionality, smoothness, and geometry of the random parameter-to-objective map. Specifically, the components of the research include: (1) Analysis of the rank or spectrum decay of the Hessian of this map to prove intrinsic low-dimensionality for several classical stochastic PDE-constrained optimization problems. (2) Extension of local quadratic approximation-based stochastic optimization to that based on approximation of the Hessian as a translation invariant operator, higher order Taylor approximation, and multi-point Taylor approximation with mixture models. (3) Application to a specific large-scale and challenging problem of optimal flow control in a subsurface porous medium with a random permeability field. The methods developed in this project will apply to a wide class of PDE-constrained stochastic optimization problems. To make the methods accessible to broader communities and allow stochastic optimization specialists to prototype new algorithms and quickly run experiments, a Python library, SOUPy (Stochastic Optimization under high-dimensional Uncertainty in Python), will be implemented and released. Users will be able to rapidly prototype new PDE models and objective functions, as well as quickly implement new algorithms, conduct numerical experiments, and solve challenging problems in new domains in SOUPy.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在计算科学和工程中进行大规模模拟不仅是为了获得对系统的洞察,而且还作为决策的基础。当决策变量表示工程系统或自然系统的设计或控制时,由于知识的缺乏或内在的可变性,系统由具有不确定输入的偏微分方程组(PDE)控制,确定最优设计或控制的任务导致了PDE约束的随机优化问题。这样的问题在科学和工程的各个领域都比比皆是。例如,地下流动、等离子聚变反应堆以及化学和材料工艺的优化控制;航空航天、汽车和民用基础设施系统的优化结构设计;以及生物医学、电子和纳米结构设备的形状、布局或拓扑优化。在解决这类问题时有几个关键挑战,包括由不确定性和/或优化变量空间引起的高维问题,以及需要求解具有大量不确定参数样本的大规模偏微分方程组。这个项目将开发、分析和实现可伸缩的计算方法,使高维不确定性下的大规模偏微分方程约束随机优化问题的解变得容易处理。这些方法将应用于具有社会影响的地下水流问题;将以开放源码的形式开发和广泛传播软件。研究生将参与其中,并将接受跨学科培训。这个项目利用了随机优化问题的内在结构--特别是随机参数到目标映射的内在低维、光滑性和几何。具体地说,研究的内容包括:(1)分析该映射的Hessian的秩或谱衰减,以证明几个经典的随机PDE约束优化问题的内在低维性。(2)将基于局部二次逼近的随机优化推广到基于平移不变算子的海森逼近、高阶Taylor逼近和混合模型的多点Taylor逼近。(3)应用于具有随机渗透场的地下多孔介质中特定的大规模和具有挑战性的最优流动控制问题。该项目所开发的方法将适用于一大类偏微分方程约束的随机优化问题。为了让更广泛的社区能够访问这些方法,并允许随机优化专家制作新算法的原型并快速运行实验,将实现并发布一个Python库-SOUPY(高维不确定性下的随机优化)。用户将能够快速制作新的PDE模型和目标函数的原型,并快速实施新的算法,进行数值实验,并在SOUP的新领域解决具有挑战性的问题。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Optimal design of acoustic metamaterial cloaks under uncertainty
- DOI:10.1016/j.jcp.2021.110114
- 发表时间:2021-02-03
- 期刊:
- 影响因子:4.1
- 作者:Chen, Peng;Haberman, Michael R.;Ghattas, Omar
- 通讯作者:Ghattas, Omar
Tensor train construction from tensor actions, with application to compression of large high order derivative tensors
- DOI:10.1137/20m131936x
- 发表时间:2020-01
- 期刊:
- 影响因子:0
- 作者:Nick Alger;Peng Chen;O. Ghattas
- 通讯作者:Nick Alger;Peng Chen;O. Ghattas
Taylor Approximation for Chance Constrained Optimization Problems Governed by Partial Differential Equations with High-Dimensional Random Parameters
- DOI:10.1137/20m1381381
- 发表时间:2020-11
- 期刊:
- 影响因子:0
- 作者:Peng Chen;O. Ghattas
- 通讯作者:Peng Chen;O. Ghattas
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peng Chen其他文献
A Novel ISAR Imaging Method Using Pattern-Coupled Laplacian Scale Mixture Prior
一种利用模式耦合拉普拉斯尺度混合先验的 ISAR 成像方法
- DOI:
10.1109/lgrs.2020.2982563 - 发表时间:
2021-04 - 期刊:
- 影响因子:4.8
- 作者:
Liangyou Lu;Peng Chen;Lenan Wu - 通讯作者:
Lenan Wu
Event-triggered real-time scheduling stabilization of discrete-time Takagi-Sugeno fuzzy systems via a new weighted matrix approach
通过新的加权矩阵方法实现离散时间 Takagi-Sugeno 模糊系统的事件触发实时调度稳定性
- DOI:
10.1016/j.ins.2018.02.023 - 发表时间:
2018 - 期刊:
- 影响因子:8.1
- 作者:
Xie XiangPeng;Yue Dong;Peng Chen - 通讯作者:
Peng Chen
Influence of electrolyte additives on the cobalt oxide-based anode’s electrochemical performance and their action mechanism
电解液添加剂对氧化钴基负极电化学性能的影响及其作用机制
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:3.9
- 作者:
Qinan Dai,;Peng Chen;Shengwen Zhong;Zhengquan Yan - 通讯作者:
Zhengquan Yan
Potential of spaceborne Brillouin scattering lidar for global ocean optical profiling
星载布里渊散射激光雷达在全球海洋光学剖面分析中的潜力
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:3.8
- 作者:
Dapeng Yuan;Peng Chen;Zhihua Mao;Zhenhua Zhang - 通讯作者:
Zhenhua Zhang
Relaxed fuzzy control synthesis of nonlinear networked systems under unreliable communication links
不可靠通信链路下非线性网络系统的松弛模糊控制综合
- DOI:
10.1016/j.asoc.2015.12.019 - 发表时间:
2016-04 - 期刊:
- 影响因子:8.7
- 作者:
Xie Xiang-Peng;Yue Dong;Peng Chen - 通讯作者:
Peng Chen
Peng Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peng Chen', 18)}}的其他基金
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245111 - 财政年份:2023
- 资助金额:
$ 31万 - 项目类别:
Continuing Grant
Super-Resolution Imaging of Surface Adsorption on Single Nanoparticles for Electrochemical Dechlorination
用于电化学脱氯的单个纳米颗粒表面吸附的超分辨率成像
- 批准号:
2303933 - 财政年份:2023
- 资助金额:
$ 31万 - 项目类别:
Standard Grant
Scalable Computational Methods for Large-Scale Stochastic Optimization under High-Dimensional Uncertainty
高维不确定性下大规模随机优化的可扩展计算方法
- 批准号:
2245674 - 财政年份:2022
- 资助金额:
$ 31万 - 项目类别:
Continuing Grant
Nanoscale Mapping and Manipulation of Activity on Single Catalytic Nanocrystals/Nanostructures
单催化纳米晶体/纳米结构活性的纳米级测绘和操纵
- 批准号:
1263736 - 财政年份:2013
- 资助金额:
$ 31万 - 项目类别:
Standard Grant
Attending the NSF CBET Grantee Conference
出席 NSF CBET 受资助者会议
- 批准号:
1258820 - 财政年份:2012
- 资助金额:
$ 31万 - 项目类别:
Standard Grant
Single-Molecule Investigation of Nanocatalysis
纳米催化的单分子研究
- 批准号:
0851257 - 财政年份:2009
- 资助金额:
$ 31万 - 项目类别:
Standard Grant
CAREER: Bioinorganic Chemistry on a Single-Molecule Basis
职业:单分子基础上的生物无机化学
- 批准号:
0645392 - 财政年份:2007
- 资助金额:
$ 31万 - 项目类别:
Continuing Grant
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
REU Site: Computational Methods with applications in Materials Science
REU 网站:计算方法及其在材料科学中的应用
- 批准号:
2348712 - 财政年份:2024
- 资助金额:
$ 31万 - 项目类别:
Standard Grant
Computational methods for pandemic-scale genomic epidemiology
大流行规模基因组流行病学的计算方法
- 批准号:
MR/Z503526/1 - 财政年份:2024
- 资助金额:
$ 31万 - 项目类别:
Research Grant
CAREER: Computational Design of Fluorescent Proteins with Multiscale Excited State QM/MM Methods
职业:利用多尺度激发态 QM/MM 方法进行荧光蛋白的计算设计
- 批准号:
2338804 - 财政年份:2024
- 资助金额:
$ 31万 - 项目类别:
Continuing Grant
REU Site: Research on Computational Methods in High Performance Computing and Their Applications to Computational Sciences
REU 网站:高性能计算中的计算方法及其在计算科学中的应用研究
- 批准号:
2348884 - 财政年份:2024
- 资助金额:
$ 31万 - 项目类别:
Standard Grant
Developing computational methods to minimise social bias in healthcare AI
开发计算方法以尽量减少医疗保健人工智能中的社会偏见
- 批准号:
2868742 - 财政年份:2023
- 资助金额:
$ 31万 - 项目类别:
Studentship
PROTACS: new computational methods and targets
PROTACS:新的计算方法和目标
- 批准号:
2897704 - 财政年份:2023
- 资助金额:
$ 31万 - 项目类别:
Studentship
Novel Computational Methods for Microbiome Data Analysis in Longitudinal Study
纵向研究中微生物组数据分析的新计算方法
- 批准号:
10660234 - 财政年份:2023
- 资助金额:
$ 31万 - 项目类别:
Developing computational methods to identify of endogenous substrates of E3 ubiquitin ligases and molecular glue degraders
开发计算方法来鉴定 E3 泛素连接酶和分子胶降解剂的内源底物
- 批准号:
10678199 - 财政年份:2023
- 资助金额:
$ 31万 - 项目类别:
RUI: Characterizing Valence, Temporary, and Non-valence Anions: Computational Methods and Photo-detachment Spectroscopy
RUI:表征化合价、临时和非化合价阴离子:计算方法和光分离光谱
- 批准号:
2303652 - 财政年份:2023
- 资助金额:
$ 31万 - 项目类别:
Continuing Grant
III: Small: Computational Methods for Multi-dimensional Data Integration to Improve Phenotype Prediction
III:小:多维数据集成的计算方法以改进表型预测
- 批准号:
2246796 - 财政年份:2023
- 资助金额:
$ 31万 - 项目类别:
Standard Grant