Collaborative Research: Models, Algorithms, Simulations, and Applications for Three-Phase Systems with Solidification and Moving Contact Lines
协作研究:具有凝固和移动接触线的三相系统的模型、算法、仿真和应用
基本信息
- 批准号:2012490
- 负责人:
- 金额:$ 13.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project will develop mathematical models and numerical algorithms to address challenges in modeling fluids with multiple phases such as liquid, solid and ice. Phenomena with multiple fluid phases play an important role in many natural phenomena and industrial applications, such as atmospheric icing, additive manufacturing, and thermal spraying. For example, when a rain drop impacts onto a cold solid surface, it spreads on the solid and at the same time freezes due to the low temperature. The physical problem involves three phases (liquid, solid of the same material, and air) and the interfaces are governed by different physics. The numerical models to be developed will advance the understanding of the underlying physics and provide guidance to the design of icephobic surfaces for aircrafts, 3D printers, and thermal spraying devices. Students will be involved and trained in the computational mathematics and interdisciplinary aspects of this project.This project has the following goals: (i) to derive a variational phase-field model to describe the evolution of the solidification front as well as the liquid-air interface, with the consideration of contact line dynamics, non-equilibrium solidification, and variable density/viscosity; (ii) to develop efficient, easy-to-implement, and energy-stable numerical schemes with discrete energy laws for the proposed models; and (iii) to perform numerical simulations to validate the models and numerical schemes, and further study physically motivated problems. The model satisfies a physically consistent energy law, which is a necessary condition for a faithful description of real physics. The developed numerical schemes are energy-stable with the advantage of allowing large time steps, which is particularly important to this multi-physics problem with disparate time scales. The developed codes will allow us to simulate the solidification of flowing drops made of different materials in a wide variety of applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将开发数学模型和数值算法,以解决用液体,固体和冰等多个阶段建模流体的挑战。具有多个流体相的现象在许多自然现象和工业应用中起着重要作用,例如大气结冰,添加剂制造和热喷涂。 例如,当降雨掉落到冷固体表面上时,它会在固体上扩散,同时由于低温而冻结。物理问题涉及三个阶段(液体,相同材料的固体和空气),并且界面受不同的物理学控制。要开发的数值模型将提高对基础物理的理解,并为飞机,3D打印机和热喷涂设备设计冰球表面的设计提供指导。学生将参与和培训该项目的计算数学和跨学科方面。本项目具有以下目标:(i)得出一个变异相位模型,以描述固体界面以及液体空气界面的演变,并考虑到接触线动力学,非平衡固体固体化和可变密度/VIDCS&VILAIBLE LICES/VIDCSSICATION; (ii)开发有效,易于实施且能量稳定的数值方案,并为拟议模型提供离散的能量定律; (iii)执行数值模拟以验证模型和数值方案,并进一步研究以身体动机的问题。该模型满足了身体一致的能量法,这是对真实物理学的忠实描述的必要条件。开发的数值方案具有能量稳定,具有允许大量时间步骤的优势,这对于具有不同时间尺度的多物理问题尤其重要。开发的法规将使我们能够模拟各种应用中由不同材料制成的流量液滴的凝固。该奖项反映了NSF的法定任务,并使用基金会的知识分子优点和更广泛的影响评估标准,被认为值得通过评估来提供支持。
项目成果
期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fully discrete, decoupled and energy-stable Fourier-Spectral numerical scheme for the nonlocal Cahn–Hilliard equation coupled with Navier–Stokes/Darcy flow regime of two-phase incompressible flows
- DOI:10.1016/j.cma.2023.116289
- 发表时间:2023-10
- 期刊:
- 影响因子:7.2
- 作者:Shilin Zeng;Ziqing Xie;X. Yang;Jiangxin Wang
- 通讯作者:Shilin Zeng;Ziqing Xie;X. Yang;Jiangxin Wang
A new efficient fully-decoupled and second-order time-accurate scheme for Cahn–Hilliard phase-field model of three-phase incompressible flow
- DOI:10.1016/j.cma.2020.113589
- 发表时间:2021-04
- 期刊:
- 影响因子:7.2
- 作者:Xiaofeng Yang
- 通讯作者:Xiaofeng Yang
Fully-decoupled, energy stable second-order time-accurate and finite element numerical scheme of the binary immiscible Nematic-Newtonian model
- DOI:10.1016/j.cma.2022.114963
- 发表时间:2022-05
- 期刊:
- 影响因子:7.2
- 作者:Chuanjun Chen;X. Yang
- 通讯作者:Chuanjun Chen;X. Yang
The subdivision-based IGA-EIEQ numerical scheme for the binary surfactant Cahn–Hilliard phase- eld model on complex curved surfaces
复杂曲面上二元表面活性剂 Cahn-Hilliard 相场模型的基于细分的 IGA-EIEQ 数值格式
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:7.2
- 作者:Pan, Q;Chen, C;Rabczuk, T;Zhang, J;Yang, X
- 通讯作者:Yang, X
Reformulated Weak Formulation and Efficient Fully Discrete Finite Element Method for a Two-Phase Ferrohydrodynamics Shliomis Model
- DOI:10.1137/22m1499376
- 发表时间:2023-06
- 期刊:
- 影响因子:0
- 作者:Guodong Zhang;Xiaoming He;X. Yang
- 通讯作者:Guodong Zhang;Xiaoming He;X. Yang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
XIAOFENG YANG其他文献
XIAOFENG YANG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('XIAOFENG YANG', 18)}}的其他基金
Collaborative Research: Models, algorithms, simulations and applications for dendritic solidifications of two-phase multi-component alloys in the mushy zone
合作研究:糊状区两相多组分合金枝晶凝固的模型、算法、模拟和应用
- 批准号:
2309731 - 财政年份:2023
- 资助金额:
$ 13.5万 - 项目类别:
Standard Grant
Collaborative Research: Models, Algorithms, and Simulations for Two-Phase Ferrofluid Flows in Contact with a Solid Surface
合作研究:与固体表面接触的两相铁磁流体流动的模型、算法和模拟
- 批准号:
1818783 - 财政年份:2018
- 资助金额:
$ 13.5万 - 项目类别:
Standard Grant
Collaborative Research: Efficient, Stable and Accurate Numerical Algorithms for a class of Gradient Flow Systems and their Applications
合作研究:一类梯度流系统高效、稳定、准确的数值算法及其应用
- 批准号:
1720212 - 财政年份:2017
- 资助金额:
$ 13.5万 - 项目类别:
Standard Grant
Collaborative Research: Phase-field models, algorithms and simulations for multiphase complex fluids
合作研究:多相复杂流体的相场模型、算法和模拟
- 批准号:
1418898 - 财政年份:2014
- 资助金额:
$ 13.5万 - 项目类别:
Standard Grant
相似国自然基金
支持二维毫米波波束扫描的微波/毫米波高集成度天线研究
- 批准号:62371263
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
腙的Heck/脱氮气重排串联反应研究
- 批准号:22301211
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
水系锌离子电池协同性能调控及枝晶抑制机理研究
- 批准号:52364038
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于人类血清素神经元报告系统研究TSPYL1突变对婴儿猝死综合征的致病作用及机制
- 批准号:82371176
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
FOXO3 m6A甲基化修饰诱导滋养细胞衰老效应在补肾法治疗自然流产中的机制研究
- 批准号:82305286
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: URoL:ASC: Determining the relationship between genes and ecosystem processes to improve biogeochemical models for nutrient management
合作研究:URoL:ASC:确定基因与生态系统过程之间的关系,以改进营养管理的生物地球化学模型
- 批准号:
2319123 - 财政年份:2024
- 资助金额:
$ 13.5万 - 项目类别:
Standard Grant
Collaborative Research: New to IUSE: EDU DCL:Diversifying Economics Education through Plug and Play Video Modules with Diverse Role Models, Relevant Research, and Active Learning
协作研究:IUSE 新增功能:EDU DCL:通过具有不同角色模型、相关研究和主动学习的即插即用视频模块实现经济学教育多元化
- 批准号:
2315700 - 财政年份:2024
- 资助金额:
$ 13.5万 - 项目类别:
Standard Grant
Collaborative Research: Constraining next generation Cascadia earthquake and tsunami hazard scenarios through integration of high-resolution field data and geophysical models
合作研究:通过集成高分辨率现场数据和地球物理模型来限制下一代卡斯卡迪亚地震和海啸灾害情景
- 批准号:
2325311 - 财政年份:2024
- 资助金额:
$ 13.5万 - 项目类别:
Standard Grant
Collaborative Research: BoCP-Implementation: Testing Evolutionary Models of Biotic Survival and Recovery from the Permo-Triassic Mass Extinction and Climate Crisis
合作研究:BoCP-实施:测试二叠纪-三叠纪大规模灭绝和气候危机中生物生存和恢复的进化模型
- 批准号:
2325380 - 财政年份:2024
- 资助金额:
$ 13.5万 - 项目类别:
Standard Grant
Collaborative Research: NSFGEO-NERC: Using population genetic models to resolve and predict dispersal kernels of marine larvae
合作研究:NSFGEO-NERC:利用群体遗传模型解析和预测海洋幼虫的扩散内核
- 批准号:
2334798 - 财政年份:2024
- 资助金额:
$ 13.5万 - 项目类别:
Standard Grant