Collaborative Research: Efficient, Stable and Accurate Numerical Algorithms for a class of Gradient Flow Systems and their Applications

合作研究:一类梯度流系统高效、稳定、准确的数值算法及其应用

基本信息

  • 批准号:
    1720212
  • 负责人:
  • 金额:
    $ 16万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-07-01 至 2021-06-30
  • 项目状态:
    已结题

项目摘要

This project focuses on the development of efficient, stable and accurate numerical algorithms for gradient flow systems which are ubiquitous in modeling of real-world phenomena. It is expected that the research will not only lead to efficient numerical algorithms for a class of problems of current interests, but also contribute to better understandings of some fundamental issues in materials science, biotechnology, and other related fields through numerical simulations. This project will also provide opportunities for the involved graduate and undergraduate students to learn critical skills of computational and applied mathematics and to develop state-of-the-art numerical algorithms for science and engineering applications. The free energies of gradient flow systems usually consist of various nonlinear potentials formulated in diverse complex formats which present a major challenge in the construction of efficient and accurate time discretization schemes. The project aims at overcoming this challenge by using a flexible and robust IEQ approach that enables one to develop time discretization schemes for a large class of gradient flow systems. The goals of this proposal are three folds: (i) to develop a unified numerical framework of time-marching schemes for solving general gradient flow models with high nonlinearity; (ii) to develop efficient numerical schemes for a number of challenging gradient flow models of current interests (e.g., nonlinear coupled multivariable models, nonlocal models, anisotropic models, nonlinear coupled systems that follow various physical principles, tensor based liquid crystal models); (iii) to investigate some fundamental issues of viscoelastic drops on substrates and active liquid crystal droplets using the developed predictive numerical tools. The proposed schemes will lead to numerical predictive tools that extend the capability of mathematical and experimental analysis, and contribute to better understanding of some pressing science and engineering issues related to multi-phase complex fluids.
本项目致力于开发高效、稳定和精确的数值算法,用于模拟现实世界现象中普遍存在的梯度流系统。期望这一研究不仅能为一类当前感兴趣的问题提供高效的数值算法,而且有助于通过数值模拟更好地理解材料科学、生物技术等相关领域的一些基本问题。这个项目还将为相关的研究生和本科生提供机会,学习计算和应用数学的关键技能,并为科学和工程应用开发最先进的数值算法。梯度流系统的自由能通常由各种复数格式的非线性势能组成,这给构造高效、准确的时间离散格式带来了巨大的挑战。该项目旨在通过使用灵活而稳健的IEQ方法来克服这一挑战,该方法使人们能够为大类梯度流系统开发时间离散化方案。这项建议的目标有三个方面:(I)开发一个统一的时间推进格式的数值框架,用于求解具有高度非线性的一般梯度流模型;(Ii)为一些具有挑战性的当前感兴趣的梯度流模型(例如,非线性耦合多变量模型、非局部模型、各向异性模型、遵循各种物理原理的非线性耦合系统、基于张量的液晶模型)开发有效的数值格式;(Iii)利用开发的预测数值工具研究衬底上的粘弹性液滴和活跃的液晶液滴的一些基本问题。所提出的方案将产生数值预测工具,扩展数学和实验分析的能力,并有助于更好地理解与多相复杂流体有关的一些紧迫的科学和工程问题。

项目成果

期刊论文数量(38)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Unconditionally energy stable large time stepping method for the L2-gradient flow based ternary phase-field model with precise nonlocal volume conservation
基于L2梯度流的精确非局部体积守恒三元相场模型的无条件能量稳定大时间步长方法
Efficient, second order accurate, and unconditionally energy stable numerical scheme for a new hydrodynamics coupled binary phase-field surfactant system
新型流体动力学耦合二元相场表面活性剂体系的高效、二阶精确且无条件能量稳定的数值方案
Efficient second order unconditionally stable time marching numerical scheme for a modified phase-field crystal model with a strong nonlinear vacancy potential
  • DOI:
    10.1016/j.cpc.2019.106860
  • 发表时间:
    2019-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jun Zhang;Xiaofeng Yang
  • 通讯作者:
    Jun Zhang;Xiaofeng Yang
Regularized linear schemes for the molecular beam epitaxy model with slope selection
  • DOI:
    10.1016/j.apnum.2018.02.004
  • 发表时间:
    2018-06
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Lizhen Chen;Jia Zhao;X. Yang;X. Yang
  • 通讯作者:
    Lizhen Chen;Jia Zhao;X. Yang;X. Yang
Efficient and linear schemes for anisotropic Cahn-Hilliard model using the Stabilized-Invariant Energy Quadratization (S-IEQ) approach
使用稳定不变能量二次化 (S-IEQ) 方法的各向异性 Cahn-Hilliard 模型的高效线性方案
  • DOI:
    10.1016/j.cpc.2018.12.019
  • 发表时间:
    2019-05
  • 期刊:
  • 影响因子:
    6.3
  • 作者:
    Xu Zhen;Yang Xiaofeng;Zhang Hui;Xie Ziqing
  • 通讯作者:
    Xie Ziqing
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

XIAOFENG YANG其他文献

XIAOFENG YANG的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('XIAOFENG YANG', 18)}}的其他基金

Collaborative Research: Models, algorithms, simulations and applications for dendritic solidifications of two-phase multi-component alloys in the mushy zone
合作研究:糊状区两相多组分合金枝晶凝固的模型、算法、模拟和应用
  • 批准号:
    2309731
  • 财政年份:
    2023
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
Collaborative Research: Models, Algorithms, Simulations, and Applications for Three-Phase Systems with Solidification and Moving Contact Lines
协作研究:具有凝固和移动接触线的三相系统的模型、算法、仿真和应用
  • 批准号:
    2012490
  • 财政年份:
    2020
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
Collaborative Research: Models, Algorithms, and Simulations for Two-Phase Ferrofluid Flows in Contact with a Solid Surface
合作研究:与固体表面接触的两相铁磁流体流动的模型、算法和模拟
  • 批准号:
    1818783
  • 财政年份:
    2018
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
Collaborative Research: Phase-field models, algorithms and simulations for multiphase complex fluids
合作研究:多相复杂流体的相场模型、算法和模拟
  • 批准号:
    1418898
  • 财政年份:
    2014
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334970
  • 财政年份:
    2024
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
Collaborative Research: Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
合作研究:用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
  • 批准号:
    2343606
  • 财政年份:
    2024
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334969
  • 财政年份:
    2024
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
Collaborative Research: Integrated Materials-Manufacturing-Controls Framework for Efficient and Resilient Manufacturing Systems
协作研究:高效、弹性制造系统的集成材料制造控制框架
  • 批准号:
    2346650
  • 财政年份:
    2024
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
Collaborative Research: Integrated Materials-Manufacturing-Controls Framework for Efficient and Resilient Manufacturing Systems
协作研究:高效、弹性制造系统的集成材料制造控制框架
  • 批准号:
    2346651
  • 财政年份:
    2024
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Medium:Compact and Energy-Efficient Compute-in-Memory Accelerator for Deep Learning Leveraging Ferroelectric Vertical NAND Memory
合作研究:FET:中型:紧凑且节能的内存计算加速器,用于利用铁电垂直 NAND 内存进行深度学习
  • 批准号:
    2312886
  • 财政年份:
    2023
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Medium:Compact and Energy-Efficient Compute-in-Memory Accelerator for Deep Learning Leveraging Ferroelectric Vertical NAND Memory
合作研究:FET:中型:紧凑且节能的内存计算加速器,用于利用铁电垂直 NAND 内存进行深度学习
  • 批准号:
    2312884
  • 财政年份:
    2023
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Medium: Efficient Compilation for Dynamically Reconfigurable Atom Arrays
合作研究:FET:中:动态可重构原子阵列的高效编译
  • 批准号:
    2313084
  • 财政年份:
    2023
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Quasi Weightless Neural Networks for Energy-Efficient Machine Learning on the Edge
合作研究:SHF:小型:用于边缘节能机器学习的准失重神经网络
  • 批准号:
    2326895
  • 财政年份:
    2023
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了