SCH: INT: Collaborative Research: Using Multi-Stage Learning to Prioritize Mental Health
SCH:INT:协作研究:利用多阶段学习优先考虑心理健康
基本信息
- 批准号:2124270
- 负责人:
- 金额:$ 84.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
According to the World Health Organization and the Global Burden of Disease 2010 studies, mental health issues are a top contributor to global disease and a leading cause of disability worldwide. It is an enormous personal and societal toll. Mental illness is a common precursor to suicide, and suicidality is the second leading cause of death in youth and young adults between 10 and 34 years of age. In economic terms, mental illness exceeds cardiovascular diseases in the projected 2011-2030 cost of noncommunicable diseases (USD16.3T worldwide). Complicating this picture further is the fact that mental healthcare is desperately resource-limited, and clinicians treating people for mental health problems operate in a vacuum between visits. This project proposes a fundamental shift in how machine learning is used to approach the problem of mental health detection and monitoring, with a technological investigation that brings together speech analysis, language analysis, and machine learning research, informed by deep clinical experience and expertise and fueled by ethically collected data. A tiered multiarmed bandit framework will be used to provide a highly flexible way to evaluate multiple kinds of evidence in settings where there can be diverse methods for assessment that vary in cost and the value of the information they provide. As such, it is an excellent fit for the real-world problem of mental health assessment in resource-limited settings. Investigations will include simulations of patient monitoring between clinical visits that will be informed by realistic, real-world assumptions and team members' clinical experience treating patients with schizophrenia, depression, and risk of suicide.At the core of this project's technical approach is the recognition that the “multi-armed bandit” problem in machine learning is a good fit for the real-world scenario that mental health providers face when monitoring a population of patients in treatment: what is the best way to allocate limited resources among competing choices, given only limited information? This project develops a tiered multi-armed bandit formulation, where a succession of stages is applied to a population of patients in order to best allocate different types of resources, each with different per-patient impact but also cost. Conceptually, tiered approaches are familiar in current medical practice. For example, patient contact typically progresses from a receptionist, to a nurse or intake coordinator, perhaps to a certified nurse practitioner, to a primary care doctor, ultimately to a specialist---each step involving corresponding increases in both the cost of the professional involved and their degree of expertise. The tiered multi-armed bandit model developed by this award includes concerns of stochastic and adverse selection, where patients at one tier do not proceed deterministically to the next, even when explicitly selected. It also incorporates complex (e.g., non-linear such as monotone submodular) objective functions that better capture within-cohort interactions. One core strength of the tiered model is that it provides a flexible way to incorporate multiple kinds of evaluative evidence in settings where there can be diverse methods for assessment that vary in cost and the value of the information they provide. Toward that end, this project also includes both text analysis and speech analysis components that make use of ethically collected language and speech data and clinically validated assessments of mental condition. Techniques developed under this award, while directly motivated by and tested in the mental health setting, will be useful in other settings in both healthcare as well as other settings where a "prioritization funnel" is in play, including talent sourcing and customer acquisition.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
根据世界卫生组织和2010年全球疾病负担研究,心理健康问题是全球疾病的最大贡献者,也是全球残疾的主要原因。这是一个巨大的个人和社会代价。精神疾病是自杀的常见前兆,自杀是10至34岁青年和年轻人死亡的第二大原因。在经济方面,在2011 - 2030年非传染性疾病的预计成本中,精神疾病超过心血管疾病(全球16.3万亿美元)。使这一情况进一步复杂化的是,精神卫生保健资源极其有限,临床医生治疗精神健康问题的人在访问之间的真空中运作。该项目提出了如何使用机器学习来解决心理健康检测和监测问题的根本转变,技术调查将语音分析,语言分析和机器学习研究结合在一起,以深厚的临床经验和专业知识为基础,并以道德收集的数据为动力。将使用一个分层的多武装匪徒框架,以提供一种高度灵活的方式,在可能有各种评估方法的环境中评估多种证据,这些方法的成本和所提供信息的价值各不相同。因此,它非常适合在资源有限的环境中进行心理健康评估的现实问题。研究将包括临床访视之间的患者监测模拟,这些模拟将通过现实的、真实世界的假设和团队成员治疗精神分裂症、抑郁症、该项目技术方法的核心是认识到机器学习中的"多臂强盗"问题非常适合真实的-心理健康提供者在监测接受治疗的患者人群时面临的世界情景:在只有有限信息的情况下,在相互竞争的选择中分配有限资源的最佳方式是什么?该项目开发了一个分层的多臂强盗公式,其中一系列阶段应用于患者人群,以便最好地分配不同类型的资源,每个阶段对每位患者的影响不同,但成本也不同。从概念上讲,分层方法在当前的医疗实践中很常见。例如,病人的联系通常从接待员,护士或摄入协调员,也许是一个认证的执业护士,初级保健医生,最终专家-每一步都涉及相应的增加专业人员的成本和他们的专业知识程度。该奖项开发的分层多臂强盗模型包括随机选择和逆向选择的问题,其中一层的患者即使明确选择,也不会确定性地进入下一层。它还包括复杂的(例如,非线性(例如单调次模)目标函数,其更好地捕获群组内的相互作用。分层模式的一个核心优势是,它提供了一种灵活的方式,在可能存在各种评估方法的环境中纳入多种评价证据,这些方法的成本和所提供信息的价值各不相同。为此,该项目还包括文本分析和语音分析组件,这些组件利用道德收集的语言和语音数据以及临床验证的精神状况评估。在这个奖项下开发的技术,虽然直接受到心理健康环境的激励和测试,但在医疗保健以及其他"优先级漏斗"发挥作用的环境中,该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查进行评估,被认为值得支持的搜索.
项目成果
期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Networked Restless Bandits with Positive Externalities
具有正外部性的网络不安强盗
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Herlihy, Christine;Dickerson, John
- 通讯作者:Dickerson, John
Multimodal Depression Severity Score Prediction Using Articulatory Coordination Features and Hierarchical Attention Based Text Embeddings
- DOI:10.21437/interspeech.2022-11099
- 发表时间:2022-09
- 期刊:
- 影响因子:0
- 作者:Nadee Seneviratne;C. Espy-Wilson
- 通讯作者:Nadee Seneviratne;C. Espy-Wilson
The Dichotomous Affiliate Stable Matching Problem: Approval-Based Matching with Applicant-Employer Relations
- DOI:10.24963/ijcai.2022/51
- 发表时间:2022-02
- 期刊:
- 影响因子:0
- 作者:Marina Knittel;Samuel Dooley;John P. Dickerson
- 通讯作者:Marina Knittel;Samuel Dooley;John P. Dickerson
Forecasting Patient Outcomes in Kidney Exchange
预测肾脏交换的患者结果
- DOI:10.24963/ijcai.2022/701
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Durvasula, Naveen;Srinivasan, Aravind;Dickerson, John
- 通讯作者:Dickerson, John
Robustness Disparities in Face Detection
- DOI:10.48550/arxiv.2211.15937
- 发表时间:2022-11
- 期刊:
- 影响因子:0
- 作者:Samuel Dooley;George Z. Wei;T. Goldstein;John P. Dickerson
- 通讯作者:Samuel Dooley;George Z. Wei;T. Goldstein;John P. Dickerson
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Carol Espy-Wilson其他文献
Computationally Scalable and Clinically Sound: Laying the Groundwork to Use Machine Learning Techniques for Social Media and Language Data in Predicting Psychiatric Symptoms
- DOI:
10.1016/j.biopsych.2022.02.146 - 发表时间:
2022-05-01 - 期刊:
- 影响因子:
- 作者:
Deanna Kelly;Glen Coppersmith;John Dickerson;Carol Espy-Wilson;Hanna Michel;Philip Resnik - 通讯作者:
Philip Resnik
Carol Espy-Wilson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Carol Espy-Wilson', 18)}}的其他基金
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
- 批准号:
2141413 - 财政年份:2022
- 资助金额:
$ 84.24万 - 项目类别:
Standard Grant
Collaborative Research: Effects of production variability on the acoustic consequences of coordinated articulatory gestures
合作研究:生产变异性对协调发音姿势的声学结果的影响
- 批准号:
1436600 - 财政年份:2014
- 资助金额:
$ 84.24万 - 项目类别:
Standard Grant
RI: Medium: Collaborative Research: Multilingual Gestural Models for Robust Language-Independent Speech Recognition
RI:媒介:协作研究:用于鲁棒语言无关语音识别的多语言手势模型
- 批准号:
1162525 - 财政年份:2012
- 资助金额:
$ 84.24万 - 项目类别:
Standard Grant
CIF: Small: Nonintrusive Digital Speech Forensics: Source Identification and Content authentication
CIF:小型:非侵入式数字语音取证:源识别和内容身份验证
- 批准号:
0917104 - 财政年份:2009
- 资助金额:
$ 84.24万 - 项目类别:
Standard Grant
RI: Extension of the APP detector for multipitch tracking and speaker separation
RI:APP 检测器的扩展,用于多音高跟踪和扬声器分离
- 批准号:
0812509 - 财政年份:2008
- 资助金额:
$ 84.24万 - 项目类别:
Standard Grant
RI: Collaborative Research: Landmark-based Robust Speech Recognition Using Prosody-Guided Models of Speech Variability
RI:协作研究:使用韵律引导的语音变异模型进行基于地标的鲁棒语音识别
- 批准号:
0703859 - 财政年份:2007
- 资助金额:
$ 84.24万 - 项目类别:
Continuing Grant
The Development of Low-Level Speaker-Specific Information for Speaker Recognition
用于说话人识别的低级说话人特定信息的开发
- 批准号:
0519256 - 财政年份:2005
- 资助金额:
$ 84.24万 - 项目类别:
Continuing Grant
Acoustic-Phonetic Knowledge and Speech Recognition
声学语音知识和语音识别
- 批准号:
0236707 - 财政年份:2003
- 资助金额:
$ 84.24万 - 项目类别:
Continuing Grant
SGER: Exploration of a Neurological Model to Improve the Extraction of Linguistic Features in Speech
SGER:探索神经模型以改进语音中语言特征的提取
- 批准号:
0233482 - 财政年份:2002
- 资助金额:
$ 84.24万 - 项目类别:
Standard Grant
相似国自然基金
内源性逆转录病毒MER65-int调控人类胎
盘发育与子宫内膜重塑的功能研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
隐秘重组信号序列INT-RSS在T细胞受体基因Tcra重排中的功能和机制研究
- 批准号:32370939
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
HPV16 E7 通过 Int1 蛋白调控 Wnt 信号通路调节肿瘤局部树突状细胞活性
- 批准号:LQ22H160033
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
选择性PPARγ激动剂INT131调控适应性产热和AD-MSCs分化成棕色样脂肪细胞的机制研究
- 批准号:81903680
- 批准年份:2019
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
INT复合物调节U snRNA 3'加工的结构基础
- 批准号:31800624
- 批准年份:2018
- 资助金额:28.0 万元
- 项目类别:青年科学基金项目
沉默Int6基因的骨髓间充质干细胞复合生物支架构建血管化腹股沟疝补片及其促补片血管化机制
- 批准号:81371698
- 批准年份:2013
- 资助金额:70.0 万元
- 项目类别:面上项目
HIF/Int6调控迟发型EPC体外增殖的机制及其治疗重度子痫前期的可行性
- 批准号:81100439
- 批准年份:2011
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
SCH: INT: Collaborative Research: An Intelligent Pervasive Augmented reaLity therapy (iPAL) for Opioid Use Disorder and Recovery
SCH:INT:合作研究:针对阿片类药物使用障碍和恢复的智能普遍增强现实疗法 (iPAL)
- 批准号:
2343183 - 财政年份:2023
- 资助金额:
$ 84.24万 - 项目类别:
Standard Grant
SCH: INT: Collaborative Research: DeepSense: Interpretable Deep Learning for Zero-effort Phenotype Sensing and Its Application to Sleep Medicine
SCH:INT:合作研究:DeepSense:零努力表型感知的可解释深度学习及其在睡眠医学中的应用
- 批准号:
2313481 - 财政年份:2022
- 资助金额:
$ 84.24万 - 项目类别:
Standard Grant
SCH: INT: Collaborative Research: Context-Adaptive Multimodal Informatics for Psychiatric Discharge Planning
SCH:INT:合作研究:用于精神病出院计划的上下文自适应多模态信息学
- 批准号:
10573225 - 财政年份:2021
- 资助金额:
$ 84.24万 - 项目类别:
SCH: INT: Collaborative Research: Context-Adaptive Multimodal Informatics for Psychiatric Discharge Planning
SCH:INT:合作研究:用于精神病出院计划的上下文自适应多模态信息学
- 批准号:
10392429 - 财政年份:2021
- 资助金额:
$ 84.24万 - 项目类别:
SCH: INT: Collaborative Research: Privacy-Preserving Federated Transfer Learning for Early Acute Kidney Injury Risk Prediction
SCH:INT:合作研究:用于早期急性肾损伤风险预测的隐私保护联合迁移学习
- 批准号:
2014554 - 财政年份:2020
- 资助金额:
$ 84.24万 - 项目类别:
Standard Grant
SCH: INT: Collaborative Research: Privacy-Preserving Federated Transfer Learning for Early Acute Kidney Injury Risk Prediction
SCH:INT:合作研究:用于早期急性肾损伤风险预测的隐私保护联合迁移学习
- 批准号:
2014552 - 财政年份:2020
- 资助金额:
$ 84.24万 - 项目类别:
Standard Grant
SCH: INT: Collaborative Research: An intelligent Pervasive Augmented reaLity therapy (iPAL) for Opioid Use Disorder and Recovery
SCH:INT:合作研究:针对阿片类药物使用障碍和恢复的智能普遍增强现实疗法 (iPAL)
- 批准号:
2019389 - 财政年份:2020
- 资助金额:
$ 84.24万 - 项目类别:
Standard Grant
SCH: INT: Collaborative Research: An intelligent Pervasive Augmented reaLity therapy (iPAL) for Opioid Use Disorder and Recovery
SCH:INT:合作研究:针对阿片类药物使用障碍和恢复的智能普遍增强现实疗法 (iPAL)
- 批准号:
2013651 - 财政年份:2020
- 资助金额:
$ 84.24万 - 项目类别:
Standard Grant
SCH: INT: Collaborative Research: An Intelligent Pervasive Augmented reaLity therapy (iPAL) for Opioid Use Disorder and Recovery
SCH:INT:合作研究:针对阿片类药物使用障碍和恢复的智能普遍增强现实疗法 (iPAL)
- 批准号:
2013122 - 财政年份:2020
- 资助金额:
$ 84.24万 - 项目类别:
Standard Grant
SCH: INT: Collaborative Research: DeepSense: Interpretable Deep Learning for Zero-effort Phenotype Sensing and Its Application to Sleep Medicine
SCH:INT:合作研究:DeepSense:零努力表型感知的可解释深度学习及其在睡眠医学中的应用
- 批准号:
2014431 - 财政年份:2020
- 资助金额:
$ 84.24万 - 项目类别:
Standard Grant