Benchmarking and Improving Makerspaces Using Quantitative Network Analysis
使用定量网络分析对创客空间进行基准测试和改进
基本信息
- 批准号:2013547
- 负责人:
- 金额:$ 35.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project aims to serve the national interest by improving students’ makerspace experiences so that all students can benefit from this learning environment. Previous work has shown that makerspaces can help engineering students learn and apply engineering concepts. As a result, there has been dramatic growth in the number of makerspaces at educational institutions. More research is needed to understand student interactions in these spaces and how these spaces should be designed to support student learning. This project will use network analysis techniques to study the network of activities in a makerspace that lead to successful student experiences. The proposed analyses will model a makerspace as a network of interactions between equipment, staff, and students. Results from this study will help educators to 1) identify and remove previously unknown hurdles for students who rarely use the space, 2) design an effective space using limited resources, 3) understand the impact of new equipment or staff, and 4) create learning opportunities such as workshops and curriculum integration that increase student learning. This project will benefit engineering students from the high school level to graduate level, in small programs and at large universities. The new knowledge produced by this project may be useful for maximizing equipment and support infrastructure, and for guiding new equipment purchases. Thus, the results will support further development of effective makerspaces.This project hypothesizes that network-level analyses and metrics can provide valuable insights into student learning in makerspaces and will support what-if scenarios for proposed changes in spaces. Systems modeling and analysis have been used successfully to understand complex human and biological networks. In the context of makerspaces, this technique will provide measures of interaction between system components such as students, staff, and equipment. The relative importance of these components in the space will also be measured. The analyses will identify the system components that are frequently used when students work in the makerspace over multiple visits. The identification of important system components will inform the creation of new makerspaces where resources are limited, ensuring that equipment investments will have the largest impact on student learning. The key project objectives are to (1) use network analysis to understand the connection between makerspace structure and successful functioning of the space, (2) create design guidelines for both new and existing makerspaces, derived from the analyses of two successful makerspaces, and (3) identify potential barriers that prevent students, especially underrepresented minorities, from using makerspaces. The project will allow for the comparison of makerspaces that have different levels of integration with the curriculum and methods of student introduction (pop-up classes, tours, extra-curricular competitions, advertising, and “bring a friend”). Demonstration of the effectiveness of the analyses in characterizing makerspaces and the ease of data collection will help support the use of this approach in future work that compares makerspaces nationwide. The NSF IUSE: EHR Program supports research and development projects to improve the effectiveness of STEM education for all students. Through the Engaged Student Learning track, the program supports the creation, exploration, and implementation of promising practices and tools.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在通过改善学生的创客空间体验来服务于国家利益,以便所有学生都能从这种学习环境中受益。以前的工作表明,创客空间可以帮助工程专业的学生学习和应用工程概念。因此,教育机构的创客空间数量急剧增长。需要更多的研究来了解学生在这些空间中的互动,以及如何设计这些空间来支持学生的学习。该项目将使用网络分析技术来研究创客空间中的活动网络,从而获得成功的学生体验。拟议的分析将创客空间建模为设备,员工和学生之间的互动网络。这项研究的结果将有助于教育工作者1)识别和消除以前未知的障碍,为学生谁很少使用的空间,2)设计一个有效的空间使用有限的资源,3)了解新设备或工作人员的影响,和4)创造学习机会,如研讨会和课程整合,提高学生的学习。该项目将使工程专业的学生受益,从高中到研究生,在小型项目和大型大学。该项目产生的新知识可能有助于最大限度地利用设备和支持基础设施,并指导新设备的采购。 因此,结果将支持有效的makerspaces.This项目的进一步发展假设,网络级的分析和指标可以提供有价值的见解,学生在makerspaces学习,并将支持什么,如果场景中提出的空间变化。系统建模和分析已成功地用于理解复杂的人类和生物网络。在创客空间的背景下,这种技术将提供系统组件(如学生,员工和设备)之间的交互措施。还将测量这些组件在空间中的相对重要性。这些分析将确定学生在多次访问创客空间时经常使用的系统组件。重要系统组件的识别将为在资源有限的地方创建新的创客空间提供信息,确保设备投资对学生学习产生最大的影响。该项目的主要目标是(1)利用网络分析来了解创客空间结构与空间成功运作之间的联系,(2)根据对两个成功的创客空间的分析,为新的和现有的创客空间创建设计指南,以及(3)确定阻止学生,特别是代表性不足的少数民族,使用创客空间的潜在障碍。该项目将允许比较与课程和学生介绍方法(弹出式课程,图尔斯,课外比赛,广告和“带朋友”)有不同程度融合的创客空间。证明分析在表征创客空间方面的有效性以及数据收集的便利性将有助于支持在未来比较全国创客空间的工作中使用这种方法。NSF IUSE:EHR计划支持研究和开发项目,以提高所有学生STEM教育的有效性。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Tool Usage Patterns of Mechanical Engineering Students in Academic Makerspaces
机械工程专业学生在学术创客空间中的工具使用模式
- DOI:10.1109/fie58773.2023.10342990
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Blair, Samuel;Crose, Claire;Linsey, Julie;Layton, Astrid
- 通讯作者:Layton, Astrid
Makerspace Network Analysis for Identifying Student Demographic Usage
用于识别学生人口统计使用情况的 Makerspace 网络分析
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Blair, Samuel;Hairston, Garrett;Banks, Henry;Linsey, Julie;Layton, Astrid
- 通讯作者:Layton, Astrid
Do I Fit In? Examining Student Perceptions of Belonging and Comfort in University Makerspaces
我适合吗?
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Kaat, Claire;Blair, Samuel;Linsey, Julie;Layton, Astrid
- 通讯作者:Layton, Astrid
The Effects of COVID-19 on Students’ Tool Usage in Academic Makerspaces
COVID-19 对学生在学术创客空间中使用工具的影响
- DOI:10.18260/1-2--43122
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Blair, Samuel;Crose, Claire;Linsey, Julie;Layton, Astrid
- 通讯作者:Layton, Astrid
Bipartite Network Analysis Utilizing Survey Data to Determine Student and Tool Interactions in a Makerspace
双向网络分析利用调查数据确定创客空间中的学生和工具交互
- DOI:10.18260/1-2--36750
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Blair, Samuel;Banks, Henry;Linsey, Julie;Layton, Astrid
- 通讯作者:Layton, Astrid
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Astrid Layton其他文献
Leveraging graph clustering techniques for cyber‐physical system analysis to enhance disturbance characterisation
利用图聚类技术进行信息物理系统分析以增强扰动表征
- DOI:
10.1049/cps2.12087 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
N. Jacobs;S. Hossain‐McKenzie;Shining Sun;Emily Payne;Adam Summers;Leen Al‐Homoud;Astrid Layton;Katherine R. Davis;Chris Goes - 通讯作者:
Chris Goes
Makerspace Network Analysis for Identifying Student Demographic Usage 6th International Symposium on Academic Makerspaces
用于识别学生人口统计用途的创客空间网络分析第六届学术创客空间国际研讨会
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Samuel Blair;Garrett Hairston;Henry A. Banks;J. Linsey;Astrid Layton - 通讯作者:
Astrid Layton
Extending Ecological Network Analysis to Design Resilient Cyber-Physical System of Systems
扩展生态网络分析以设计弹性网络物理系统
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Abheek Chatterjee;Hao Huang;Richard Malak;Katherine R. Davis;Astrid Layton - 通讯作者:
Astrid Layton
Designing eco-industrial parks in a nested structure to mimic mutualistic ecological networks
- DOI:
10.1016/j.procir.2018.12.011 - 发表时间:
2019-01-01 - 期刊:
- 影响因子:
- 作者:
Colton Brehm;Astrid Layton - 通讯作者:
Astrid Layton
Bio-Inspired and AI DeepWalk Based Approach to Understand Cyber-Physical Interdependencies of Power Grid Infrastructure
基于仿生和人工智能 DeepWalk 的方法来理解电网基础设施的网络物理相互依赖性
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Shining Sun;Emily Payne;Astrid Layton;Katherine R. Davis;S. Hossain‐McKenzie;N. Jacobs - 通讯作者:
N. Jacobs
Astrid Layton的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Astrid Layton', 18)}}的其他基金
CAREER: Resilient Engineering Systems Design Via Early-Stage Bio-Inspiration
职业:通过早期生物灵感进行弹性工程系统设计
- 批准号:
2340170 - 财政年份:2024
- 资助金额:
$ 35.58万 - 项目类别:
Standard Grant
相似国自然基金
Improving modelling of compact binary evolution.
- 批准号:10903001
- 批准年份:2009
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Balancing the global alkalinity cycle by improving models of river chemistry
职业:通过改进河流化学模型平衡全球碱度循环
- 批准号:
2338139 - 财政年份:2025
- 资助金额:
$ 35.58万 - 项目类别:
Continuing Grant
Understanding and Improving Electrochemical Carbon Dioxide Capture
了解和改进电化学二氧化碳捕获
- 批准号:
MR/Y034244/1 - 财政年份:2025
- 资助金额:
$ 35.58万 - 项目类别:
Fellowship
RII Track-4:NSF: Improving subseasonal-to-seasonal forecasts of Central Pacific extreme hydrometeorological events and their impacts in Hawaii
RII Track-4:NSF:改进中太平洋极端水文气象事件的次季节到季节预报及其对夏威夷的影响
- 批准号:
2327232 - 财政年份:2024
- 资助金额:
$ 35.58万 - 项目类别:
Standard Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 35.58万 - 项目类别:
Continuing Grant
Improving Resilience of MCDI for Water Supply in Remote Communities
提高偏远社区供水的 MCDI 弹性
- 批准号:
DP240101469 - 财政年份:2024
- 资助金额:
$ 35.58万 - 项目类别:
Discovery Projects
Improving efficacy of biopesticides through understanding mode of action
通过了解作用方式提高生物农药的功效
- 批准号:
IE230100103 - 财政年份:2024
- 资助金额:
$ 35.58万 - 项目类别:
Early Career Industry Fellowships
TRUST2 - Improving TRUST in artificial intelligence and machine learning for critical building management
TRUST2 - 提高关键建筑管理的人工智能和机器学习的信任度
- 批准号:
10093095 - 财政年份:2024
- 资助金额:
$ 35.58万 - 项目类别:
Collaborative R&D
mPatch: a rapid test for improving diagnosis and triage of melanoma patients in primary care
mPatch:一种快速测试,用于改善初级保健中黑色素瘤患者的诊断和分诊
- 批准号:
MR/Y503381/1 - 财政年份:2024
- 资助金额:
$ 35.58万 - 项目类别:
Research Grant
Multi-agent Self-improving of Large Language Models (LLMs)
大型语言模型 (LLM) 的多智能体自我改进
- 批准号:
2903811 - 财政年份:2024
- 资助金额:
$ 35.58万 - 项目类别:
Studentship
Improving females' health and performance by mitigating heat strain
通过缓解热应激改善女性的健康和表现
- 批准号:
MR/X036235/1 - 财政年份:2024
- 资助金额:
$ 35.58万 - 项目类别:
Fellowship