CAREER: Resilient Engineering Systems Design Via Early-Stage Bio-Inspiration
职业:通过早期生物灵感进行弹性工程系统设计
基本信息
- 批准号:2340170
- 负责人:
- 金额:$ 54.02万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-09-01 至 2029-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Resilience is critical for engineering systems, but comprehensive methods and widely accepted guidelines tailored specifically for incorporating resilience in the early stages of system design are lacking. This Faculty Early Career Development Program (CAREER) award supports research which aims to address these gaps by working at the intersection of bio-inspired design, systems engineering, and engineering design to establish quantitative tools for addressing system resilience when minimal information is available. Biological ecosystem characteristics will be investigated for their ability to guide system designers in the early design stages towards better response and recovery, including situations involving targeted and/or random disturbances. Ultimately, the project will develop knowledge and methods to ensure that human systems can withstand disturbances – especially important for the critical infrastructure systems that supply our water, power, or medicines – by safeguarding against potential failures and costly downtime. Collaborative feedback from ecologists, industry, and academic experts will ensure that the interdisciplinary work maintains each domain’s critical features. Additional deliverables from this project include a “Walk Like an Engineer” program, which engages participants of all ages and abilities in engineering inspiration scavenger hunts through local parks, led by both a bio-inspired engineering design expert and a Nature Center host. The themed nature walks, which will focus on topics such as ‘Nature’s Systems’ and ‘Nature’s Resilience’, will encourage participants to see themselves as design engineers learning from nature. The program will advance the United States future workforce by nurturing interdisciplinary communication skills and early interest and excitement in STEM-based design, while also teaching the public about nature and engineering in a connected manner. This project supports the long-term goal of enhancing the early integration of resilience into the system design process, allowing designers to make proactive choices to create more sustainable and resilient systems that can withstand disruptions and recover effectively. The research objectives of this project are to provide quantitative tools for assessment of biological inspiration in engineering system design, extend the use of effective bio-inspiration into system recovery, and formulate practical design tools for achieving system resilience from biological ecosystem principles found to be effective. Ecological Network Analysis will provide a quantitative method for extracting desirable traits from resilient biological ecosystems (e.g., food webs) and applying them to human engineered systems. Of interest is how these traits can improve a system’s robustness and recovery, which will be tested using a variety of case study types and criticality levels, including supply chains, water distribution networks, power grids, and industrial resource networks. The most beneficial biological systems traits will be further investigated to generate fundamental engineering principles, such as the impact of topology versus weights on nature’s systems characteristics. A study of targeted versus random disturbances will provide additional insight into where these biological systems characteristics have the most value for engineering designers seeking system-level resilience. The project’s research objectives are integrated and enhanced by the project’s educational objectives: to create and foster engineering excitement before students typically self-exclude from STEM; teach the public about how nature and engineering can be connected; and create STEM access for and inclusion of students with intellectual and developmental disabilities. Evaluation of the educational outreach activities will also provide important documentation for the use of nature to increase interest in engineering at all ages, as well as in underrepresented and underserved groups.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
弹性对于工程系统是至关重要的,但缺乏全面的方法和被广泛接受的指导方针,专门为在系统设计的早期阶段纳入弹性而量身定做。该学院早期职业发展计划(Career)奖项旨在通过在生物灵感设计、系统工程和工程设计的交叉点工作来建立量化工具,在信息最少的情况下解决系统弹性问题,从而支持旨在解决这些差距的研究。将对生物生态系统特性进行调查,以了解它们在早期设计阶段指导系统设计者更好地应对和恢复的能力,包括涉及定向和/或随机干扰的情况。最终,该项目将开发知识和方法,通过防范潜在故障和代价高昂的停机时间,确保人类系统能够经受住干扰--对供应我们的水、电或药品的关键基础设施系统尤其重要。来自生态学家、行业和学术专家的协作反馈将确保跨学科工作保持每个领域的关键特征。该项目的其他成果包括一个名为“像工程师一样走路”的项目,该项目邀请所有年龄和能力的参与者在当地公园寻找工程灵感,由一名受生物启发的工程设计专家和一名自然中心主持人领导。以自然为主题的步行活动,将围绕“自然的系统”和“自然的复原力”等主题展开,将鼓励参与者将自己视为向自然学习的设计工程师。该项目将通过培养跨学科的沟通技能和对基于STEM的设计的早期兴趣和兴奋来促进美国未来的劳动力,同时还将以一种相互关联的方式向公众传授自然和工程知识。该项目支持将弹性早期整合到系统设计过程中的长期目标,使设计人员能够做出积极的选择,以创建能够承受中断和有效恢复的更可持续和更有弹性的系统。本项目的研究目标是为工程系统设计中生物灵感的评估提供量化工具,将有效的生物灵感的使用推广到系统恢复中,并从被发现有效的生物生态系统原理中制定实现系统弹性的实用设计工具。生态网络分析将提供一种从有弹性的生物生态系统(如食物网)中提取所需特征并将其应用于人类工程系统的定量方法。令人感兴趣的是这些特征如何提高系统的稳健性和恢复能力,这将使用各种案例研究类型和关键级别进行测试,包括供应链、供水网络、电网和工业资源网络。将进一步研究最有益的生物系统特征,以产生基本的工程原理,例如拓扑与权重对自然系统特征的影响。对定向干扰和随机干扰的研究将为寻求系统级弹性的工程设计者提供更多关于这些生物系统特征在哪里具有最大价值的洞察。该项目的研究目标通过该项目的教育目标得到整合和加强:在学生通常自我排除在STEM之外之前创造和培养工程兴奋;向公众传授如何将自然和工程学联系起来;为智力和发育障碍学生创造STEM机会并将其纳入其中。对教育推广活动的评估也将为利用自然提高所有年龄段以及代表不足和服务不足的群体对工程学的兴趣提供重要的文件。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Astrid Layton其他文献
Leveraging graph clustering techniques for cyber‐physical system analysis to enhance disturbance characterisation
利用图聚类技术进行信息物理系统分析以增强扰动表征
- DOI:
10.1049/cps2.12087 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
N. Jacobs;S. Hossain‐McKenzie;Shining Sun;Emily Payne;Adam Summers;Leen Al‐Homoud;Astrid Layton;Katherine R. Davis;Chris Goes - 通讯作者:
Chris Goes
Makerspace Network Analysis for Identifying Student Demographic Usage 6th International Symposium on Academic Makerspaces
用于识别学生人口统计用途的创客空间网络分析第六届学术创客空间国际研讨会
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Samuel Blair;Garrett Hairston;Henry A. Banks;J. Linsey;Astrid Layton - 通讯作者:
Astrid Layton
Extending Ecological Network Analysis to Design Resilient Cyber-Physical System of Systems
扩展生态网络分析以设计弹性网络物理系统
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Abheek Chatterjee;Hao Huang;Richard Malak;Katherine R. Davis;Astrid Layton - 通讯作者:
Astrid Layton
Designing eco-industrial parks in a nested structure to mimic mutualistic ecological networks
- DOI:
10.1016/j.procir.2018.12.011 - 发表时间:
2019-01-01 - 期刊:
- 影响因子:
- 作者:
Colton Brehm;Astrid Layton - 通讯作者:
Astrid Layton
Bio-Inspired and AI DeepWalk Based Approach to Understand Cyber-Physical Interdependencies of Power Grid Infrastructure
基于仿生和人工智能 DeepWalk 的方法来理解电网基础设施的网络物理相互依赖性
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Shining Sun;Emily Payne;Astrid Layton;Katherine R. Davis;S. Hossain‐McKenzie;N. Jacobs - 通讯作者:
N. Jacobs
Astrid Layton的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Astrid Layton', 18)}}的其他基金
Benchmarking and Improving Makerspaces Using Quantitative Network Analysis
使用定量网络分析对创客空间进行基准测试和改进
- 批准号:
2013547 - 财政年份:2020
- 资助金额:
$ 54.02万 - 项目类别:
Standard Grant
相似海外基金
Resilient EMS PSLL: Using a Systems Engineering Approach to Enhance EMS Cognitive Work and Safety for Older Adults During Prehospital Care.
弹性 EMS PSLL:使用系统工程方法来增强院前护理期间老年人的 EMS 认知工作和安全。
- 批准号:
10769353 - 财政年份:2023
- 资助金额:
$ 54.02万 - 项目类别:
CRII: OAC: A Computational Framework for Studying Transport Phenomena in Complex Networks: From Biological Towards Sustainable and Resilient Engineering Networks
CRII:OAC:研究复杂网络中传输现象的计算框架:从生物网络到可持续和弹性工程网络
- 批准号:
2349122 - 财政年份:2023
- 资助金额:
$ 54.02万 - 项目类别:
Standard Grant
Conference: Nature-based Solutions for Resilient Communities: Preparing Students to Address Grand Challenges in Ecological Engineering
会议:基于自然的弹性社区解决方案:帮助学生做好应对生态工程重大挑战的准备
- 批准号:
2309583 - 财政年份:2023
- 资助金额:
$ 54.02万 - 项目类别:
Standard Grant
Engineering Resilient Community Pharmacies (ENRICH)
工程弹性社区药房 (ENRICH)
- 批准号:
10768139 - 财政年份:2023
- 资助金额:
$ 54.02万 - 项目类别:
Engineering Resilient Swarm Robotics Systems
工程弹性群体机器人系统
- 批准号:
RGPIN-2019-05165 - 财政年份:2022
- 资助金额:
$ 54.02万 - 项目类别:
Discovery Grants Program - Individual
BRITE Synergy: Engineering More Resilient Housing through Inclusion of Women's Knowledge, Priorities and Perceptions
BRITE Synergy:通过纳入女性知识、优先事项和看法,设计更具弹性的住房
- 批准号:
2135669 - 财政年份:2022
- 资助金额:
$ 54.02万 - 项目类别:
Standard Grant
Low-carbon engineering framework for a resilient water network using renewable energy and storage integration
使用可再生能源和存储集成的弹性供水网络的低碳工程框架
- 批准号:
2599776 - 财政年份:2021
- 资助金额:
$ 54.02万 - 项目类别:
Studentship
Planning Grant: Engineering Research Center for Integrating Native Solutions to Promote and Inform Resilient Engineering (INSPIRE)
规划拨款:集成原生解决方案以促进和指导弹性工程的工程研究中心 (INSPIRE)
- 批准号:
2124356 - 财政年份:2021
- 资助金额:
$ 54.02万 - 项目类别:
Standard Grant
CRII: OAC: A Computational Framework for Studying Transport Phenomena in Complex Networks: From Biological Towards Sustainable and Resilient Engineering Networks
CRII:OAC:研究复杂网络中传输现象的计算框架:从生物网络到可持续和弹性工程网络
- 批准号:
2105012 - 财政年份:2021
- 资助金额:
$ 54.02万 - 项目类别:
Standard Grant
Planning Grant: Engineering Research Center for Green and Climate Resilient Built Environments (Green CRiB)
规划资助:绿色和气候适应型建筑环境工程研究中心(Green CRiB)
- 批准号:
2124332 - 财政年份:2021
- 资助金额:
$ 54.02万 - 项目类别:
Standard Grant