CAREER: Resilient Engineering Systems Design Via Early-Stage Bio-Inspiration
职业:通过早期生物灵感进行弹性工程系统设计
基本信息
- 批准号:2340170
- 负责人:
- 金额:$ 54.02万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-09-01 至 2029-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Resilience is critical for engineering systems, but comprehensive methods and widely accepted guidelines tailored specifically for incorporating resilience in the early stages of system design are lacking. This Faculty Early Career Development Program (CAREER) award supports research which aims to address these gaps by working at the intersection of bio-inspired design, systems engineering, and engineering design to establish quantitative tools for addressing system resilience when minimal information is available. Biological ecosystem characteristics will be investigated for their ability to guide system designers in the early design stages towards better response and recovery, including situations involving targeted and/or random disturbances. Ultimately, the project will develop knowledge and methods to ensure that human systems can withstand disturbances – especially important for the critical infrastructure systems that supply our water, power, or medicines – by safeguarding against potential failures and costly downtime. Collaborative feedback from ecologists, industry, and academic experts will ensure that the interdisciplinary work maintains each domain’s critical features. Additional deliverables from this project include a “Walk Like an Engineer” program, which engages participants of all ages and abilities in engineering inspiration scavenger hunts through local parks, led by both a bio-inspired engineering design expert and a Nature Center host. The themed nature walks, which will focus on topics such as ‘Nature’s Systems’ and ‘Nature’s Resilience’, will encourage participants to see themselves as design engineers learning from nature. The program will advance the United States future workforce by nurturing interdisciplinary communication skills and early interest and excitement in STEM-based design, while also teaching the public about nature and engineering in a connected manner. This project supports the long-term goal of enhancing the early integration of resilience into the system design process, allowing designers to make proactive choices to create more sustainable and resilient systems that can withstand disruptions and recover effectively. The research objectives of this project are to provide quantitative tools for assessment of biological inspiration in engineering system design, extend the use of effective bio-inspiration into system recovery, and formulate practical design tools for achieving system resilience from biological ecosystem principles found to be effective. Ecological Network Analysis will provide a quantitative method for extracting desirable traits from resilient biological ecosystems (e.g., food webs) and applying them to human engineered systems. Of interest is how these traits can improve a system’s robustness and recovery, which will be tested using a variety of case study types and criticality levels, including supply chains, water distribution networks, power grids, and industrial resource networks. The most beneficial biological systems traits will be further investigated to generate fundamental engineering principles, such as the impact of topology versus weights on nature’s systems characteristics. A study of targeted versus random disturbances will provide additional insight into where these biological systems characteristics have the most value for engineering designers seeking system-level resilience. The project’s research objectives are integrated and enhanced by the project’s educational objectives: to create and foster engineering excitement before students typically self-exclude from STEM; teach the public about how nature and engineering can be connected; and create STEM access for and inclusion of students with intellectual and developmental disabilities. Evaluation of the educational outreach activities will also provide important documentation for the use of nature to increase interest in engineering at all ages, as well as in underrepresented and underserved groups.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
弹性对于工程系统至关重要,但缺乏专门为在系统设计的早期阶段纳入弹性而量身定制的全面方法和广泛接受的准则。该学院早期职业发展计划(CAREER)奖支持旨在通过在生物启发设计,系统工程和工程设计的交叉点工作来解决这些差距的研究,以建立定量工具,用于在最少的信息可用时解决系统弹性问题。将研究生物生态系统的特性,以确定其在早期设计阶段指导系统设计者更好地应对和恢复的能力,包括涉及有针对性和/或随机干扰的情况。最终,该项目将开发知识和方法,以确保人类系统能够承受干扰-特别是对供应我们的水,电力或药品的关键基础设施系统至关重要-通过保护免受潜在故障和代价高昂的停机时间。来自生态学家、工业界和学术界专家的合作反馈将确保跨学科工作保持每个领域的关键特征。该项目的其他成果包括一个“像工程师一样走路”计划,该计划让所有年龄和能力的参与者通过当地公园进行工程灵感的寻宝活动,由生物启发的工程设计专家和自然中心主持人领导。以“自然系统”和“自然的复原力”为主题的自然漫步将鼓励参与者将自己视为从自然中学习的设计工程师。该计划将通过培养跨学科的沟通技能以及对基于STEM的设计的早期兴趣和兴奋来促进美国未来的劳动力,同时还以连接的方式向公众教授自然和工程。该项目支持加强早期将复原力纳入系统设计过程的长期目标,使设计人员能够积极主动地做出选择,以创建能够承受中断并有效恢复的更具可持续性和复原力的系统。本项目的研究目标是为工程系统设计中的生物灵感评估提供定量工具,将有效的生物灵感应用于系统恢复,并制定实用的设计工具,以实现有效的生物生态系统原理的系统恢复力。生态网络分析将提供一种定量方法,用于从有弹性的生物生态系统中提取理想的性状(例如,食物网)并将其应用于人类工程系统。有趣的是,这些特性如何提高系统的鲁棒性和恢复能力,这将使用各种案例研究类型和关键性水平进行测试,包括供应链,供水网络,电网和工业资源网络。将进一步研究最有益的生物系统特性,以产生基本的工程原理,例如拓扑结构与重量对自然系统特性的影响。有针对性的与随机干扰的研究将提供更多的洞察力,这些生物系统的特性有最大的价值,为工程设计师寻求系统级的弹性。该项目的研究目标被该项目的教育目标所整合和增强:在学生通常自我排除STEM之前创造和培养工程兴奋;向公众传授自然和工程如何联系;并为智力和发育障碍的学生创造STEM访问和包容。对教育推广活动的评估也将为利用自然增加所有年龄段以及代表性不足和服务不足的群体对工程的兴趣提供重要的文献。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Astrid Layton其他文献
Leveraging graph clustering techniques for cyber‐physical system analysis to enhance disturbance characterisation
利用图聚类技术进行信息物理系统分析以增强扰动表征
- DOI:
10.1049/cps2.12087 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
N. Jacobs;S. Hossain‐McKenzie;Shining Sun;Emily Payne;Adam Summers;Leen Al‐Homoud;Astrid Layton;Katherine R. Davis;Chris Goes - 通讯作者:
Chris Goes
Makerspace Network Analysis for Identifying Student Demographic Usage 6th International Symposium on Academic Makerspaces
用于识别学生人口统计用途的创客空间网络分析第六届学术创客空间国际研讨会
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Samuel Blair;Garrett Hairston;Henry A. Banks;J. Linsey;Astrid Layton - 通讯作者:
Astrid Layton
Extending Ecological Network Analysis to Design Resilient Cyber-Physical System of Systems
扩展生态网络分析以设计弹性网络物理系统
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Abheek Chatterjee;Hao Huang;Richard Malak;Katherine R. Davis;Astrid Layton - 通讯作者:
Astrid Layton
Designing eco-industrial parks in a nested structure to mimic mutualistic ecological networks
- DOI:
10.1016/j.procir.2018.12.011 - 发表时间:
2019-01-01 - 期刊:
- 影响因子:
- 作者:
Colton Brehm;Astrid Layton - 通讯作者:
Astrid Layton
Bio-Inspired and AI DeepWalk Based Approach to Understand Cyber-Physical Interdependencies of Power Grid Infrastructure
基于仿生和人工智能 DeepWalk 的方法来理解电网基础设施的网络物理相互依赖性
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Shining Sun;Emily Payne;Astrid Layton;Katherine R. Davis;S. Hossain‐McKenzie;N. Jacobs - 通讯作者:
N. Jacobs
Astrid Layton的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Astrid Layton', 18)}}的其他基金
Benchmarking and Improving Makerspaces Using Quantitative Network Analysis
使用定量网络分析对创客空间进行基准测试和改进
- 批准号:
2013547 - 财政年份:2020
- 资助金额:
$ 54.02万 - 项目类别:
Standard Grant
相似海外基金
Resilient EMS PSLL: Using a Systems Engineering Approach to Enhance EMS Cognitive Work and Safety for Older Adults During Prehospital Care.
弹性 EMS PSLL:使用系统工程方法来增强院前护理期间老年人的 EMS 认知工作和安全。
- 批准号:
10769353 - 财政年份:2023
- 资助金额:
$ 54.02万 - 项目类别:
CRII: OAC: A Computational Framework for Studying Transport Phenomena in Complex Networks: From Biological Towards Sustainable and Resilient Engineering Networks
CRII:OAC:研究复杂网络中传输现象的计算框架:从生物网络到可持续和弹性工程网络
- 批准号:
2349122 - 财政年份:2023
- 资助金额:
$ 54.02万 - 项目类别:
Standard Grant
Conference: Nature-based Solutions for Resilient Communities: Preparing Students to Address Grand Challenges in Ecological Engineering
会议:基于自然的弹性社区解决方案:帮助学生做好应对生态工程重大挑战的准备
- 批准号:
2309583 - 财政年份:2023
- 资助金额:
$ 54.02万 - 项目类别:
Standard Grant
Engineering Resilient Community Pharmacies (ENRICH)
工程弹性社区药房 (ENRICH)
- 批准号:
10768139 - 财政年份:2023
- 资助金额:
$ 54.02万 - 项目类别:
Engineering Resilient Swarm Robotics Systems
工程弹性群体机器人系统
- 批准号:
RGPIN-2019-05165 - 财政年份:2022
- 资助金额:
$ 54.02万 - 项目类别:
Discovery Grants Program - Individual
BRITE Synergy: Engineering More Resilient Housing through Inclusion of Women's Knowledge, Priorities and Perceptions
BRITE Synergy:通过纳入女性知识、优先事项和看法,设计更具弹性的住房
- 批准号:
2135669 - 财政年份:2022
- 资助金额:
$ 54.02万 - 项目类别:
Standard Grant
Planning Grant: Engineering Research Center for Integrating Native Solutions to Promote and Inform Resilient Engineering (INSPIRE)
规划拨款:集成原生解决方案以促进和指导弹性工程的工程研究中心 (INSPIRE)
- 批准号:
2124356 - 财政年份:2021
- 资助金额:
$ 54.02万 - 项目类别:
Standard Grant
Low-carbon engineering framework for a resilient water network using renewable energy and storage integration
使用可再生能源和存储集成的弹性供水网络的低碳工程框架
- 批准号:
2599776 - 财政年份:2021
- 资助金额:
$ 54.02万 - 项目类别:
Studentship
CRII: OAC: A Computational Framework for Studying Transport Phenomena in Complex Networks: From Biological Towards Sustainable and Resilient Engineering Networks
CRII:OAC:研究复杂网络中传输现象的计算框架:从生物网络到可持续和弹性工程网络
- 批准号:
2105012 - 财政年份:2021
- 资助金额:
$ 54.02万 - 项目类别:
Standard Grant
Engineering Resilient Swarm Robotics Systems
工程弹性群体机器人系统
- 批准号:
RGPIN-2019-05165 - 财政年份:2021
- 资助金额:
$ 54.02万 - 项目类别:
Discovery Grants Program - Individual