CAREER: Statistical inference of network and relational data
职业:网络和关系数据的统计推断
基本信息
- 批准号:2013789
- 负责人:
- 金额:$ 15.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-11-01 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Technological innovations have provided a primary force in advancement of scientific research and in social progress. Large scale network data and relational data are frequently encountered in genomics and health sciences, economics, finance and social media. The proposed project will (1) enhance methodological and theoretical developments for statistical analysis of network and relational data. (2) advance the understanding of the community structure of social network. The research emanating from this grant will advance the frontiers of theory and methods for network data modeling. The new developments will provide better understandings of large scale network data for researchers from diverse fields of sciences and humanities, e.g., understanding the social behavior of individuals and the dynamic nature of social network.The proposed project has the following three interrelated objectives under the theme of statistical inference for large scale network and relational data. (1) To introduce a new framework for community detection with covariate information. There have been many existing approaches to community detection. However, a majority of them focus on analyzing the network without considering the covariate information, which could be valuable for achieving greater accuracy of community detection. The goal of this research is to study when and how will covariate information help in terms of the community detection accuracy. (2) To develop a new dynamic stochastic block model framework with applications in change point detection. The stochastic block model along with its variants are usually defined for a static network. The goal here is to define a dynamic version of the stochastic block model, with a clear interpretation of how the network evolves over time. A general dynamic spectral clustering method will be proposed and its theoretical properties established. The important problem of change point detection of the dynamic network will be studied in details. (3) To introduce a conditional dependency measure with applications in undirected graphical models. It is of fundamental interest to ascertain variables or factors underlining the network dependency structure. The goal is to introduce a flexible conditional dependency measure, which can capture a wide range of different dependency structures. The PI will develop a new method for generating a general undirected graph with desirable features by making use of the resulting conditional dependency measure.
技术创新是推动科学研究和社会进步的主要力量。 大规模网络数据和关系数据在基因组学和健康科学、经济学、金融和社交媒体中经常遇到。 拟议的项目将(1)加强网络和关系数据统计分析的方法和理论发展。(2)促进对社会网络社区结构的理解。这项资助的研究将推进网络数据建模理论和方法的前沿。 新的发展将为来自不同科学和人文领域的研究人员提供更好的大规模网络数据理解,例如,理解个人的社会行为和社会网络的动态本质。在大规模网络和关系数据的统计推断的主题下,拟议的项目有以下三个相互关联的目标。(1)介绍一种新的基于协变量信息的社区发现框架。有许多现有的社区检测方法。然而,他们中的大多数人专注于分析网络,而不考虑协变量信息,这可能是有价值的,以实现更高的准确性社区检测。本研究的目标是研究协变量信息何时以及如何有助于社区检测准确性。 (2)发展一种新的动态随机块模型框架,并应用于变点检测。随机块模型沿着及其变体通常是针对静态网络定义的。这里的目标是定义一个动态版本的随机块模型,清楚地解释网络如何随着时间的推移而演变。提出了一种通用的动态谱聚类方法,并建立了它的理论性质。详细研究动态网络变点检测这一重要问题。 (3)介绍了一种条件依赖测度及其在无向图模型中的应用。确定网络依赖结构的变量或因素具有根本意义。我们的目标是引入一个灵活的条件依赖度量,它可以捕获各种不同的依赖结构。PI将开发一种新的方法,通过使用所产生的条件依赖性度量来生成具有所需特征的一般无向图。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yang Feng其他文献
New remote sensing image fusion for exploring spatiotemporal evolution of urban land use and land cover
用于探索城市土地利用和土地覆盖时空演变的新型遥感图像融合
- DOI:
10.1117/1.jrs.16.034527 - 发表时间:
2022-07 - 期刊:
- 影响因子:1.7
- 作者:
Liu Linfeng;Zhang Chengcai;Luo Weiran;Chen Shaodan;Yang Feng;Liu Jisheng - 通讯作者:
Liu Jisheng
The effect of personal and microclimatic variables on outdoor thermal comfort: A field study in cold season in Lujiazui CBD, Shanghai
个人和微气候变量对室外热舒适度的影响:上海陆家嘴CBD寒冷季节的现场研究
- DOI:
10.1016/j.scs.2018.02.025 - 发表时间:
2018 - 期刊:
- 影响因子:11.7
- 作者:
Yao JiaWei;Yang Feng;Zhuang Zhi;Shao YuHan;Yuan Feng - 通讯作者:
Yuan Feng
A Novel Encrypted Computing-in-Memory (eCIM) by Implementing Random Telegraph Noise (RTN) as Keys Based on 55 nm NOR Flash Technology
基于 55 nm NOR 闪存技术的以随机电报噪声 (RTN) 作为密钥的新型加密内存计算 (eCIM)
- DOI:
10.1109/led.2022.3190267 - 发表时间:
2022-09 - 期刊:
- 影响因子:4.9
- 作者:
Yang Feng;Jixuan Wu;Xuepeng Zhan;Jing Liu;Zhaohui Sun;Junyu Zhang;Masaharu Kobayashi;Jiezhi Chen - 通讯作者:
Jiezhi Chen
Bad Seed or Good Seed? A Content Analysis of the Main Antagonists in Walt Disney- and Studio Ghibli-Animated Films
坏种子还是好种子?
- DOI:
10.1080/17482798.2015.1058279 - 发表时间:
2015 - 期刊:
- 影响因子:3
- 作者:
Yang Feng;Jiwoo Park - 通讯作者:
Jiwoo Park
Detection of antimicrobial resistance and virulence-related genes in Streptococcus uberis and Streptococcus parauberis isolated from clinical bovine mastitis cases in northwestern China
西北地区牛乳腺炎临床病例中乳房链球菌和副乳房链球菌耐药性及毒力相关基因的检测
- DOI:
10.1016/s2095-3119(20)63185-9 - 发表时间:
2020-01 - 期刊:
- 影响因子:4.8
- 作者:
Zhang Hang;Yang Feng;Li Xin-pu;Luo Jin-yin;Wang Ling;Zhou Yu-long;Yan Yong;Wang Xu-rong;Li Hong-sheng - 通讯作者:
Li Hong-sheng
Yang Feng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yang Feng', 18)}}的其他基金
Collaborative Research: New Theory and Methods for High-Dimensional Multi-Task and Transfer Learning Inference
合作研究:高维多任务和迁移学习推理的新理论和新方法
- 批准号:
2324489 - 财政年份:2023
- 资助金额:
$ 15.13万 - 项目类别:
Continuing Grant
CAREER: Statistical inference of network and relational data
职业:网络和关系数据的统计推断
- 批准号:
1554804 - 财政年份:2016
- 资助金额:
$ 15.13万 - 项目类别:
Continuing Grant
Nonparametric classification, tuning parameter selection, and asymptotic stability for high-dimensional data
高维数据的非参数分类、调整参数选择和渐近稳定性
- 批准号:
1308566 - 财政年份:2013
- 资助金额:
$ 15.13万 - 项目类别:
Continuing Grant
相似海外基金
CAREER: Statistical foundations of particle tracking and trajectory inference
职业:粒子跟踪和轨迹推断的统计基础
- 批准号:
2339829 - 财政年份:2024
- 资助金额:
$ 15.13万 - 项目类别:
Continuing Grant
CAREER: Statistical Inference in Observational Studies -- Theory, Methods, and Beyond
职业:观察研究中的统计推断——理论、方法及其他
- 批准号:
2338760 - 财政年份:2024
- 资助金额:
$ 15.13万 - 项目类别:
Continuing Grant
CAREER: Distribution-Free and Adaptive Statistical Inference
职业:无分布和自适应统计推断
- 批准号:
2338464 - 财政年份:2024
- 资助金额:
$ 15.13万 - 项目类别:
Continuing Grant
CAREER: Statistical Inference in High Dimensions using Variational Approximations
职业:使用变分近似进行高维统计推断
- 批准号:
2239234 - 财政年份:2023
- 资助金额:
$ 15.13万 - 项目类别:
Continuing Grant
CAREER: Towards Tight Guarantees of Markov Chain Sampling Algorithms in High Dimensional Statistical Inference
职业:高维统计推断中马尔可夫链采样算法的严格保证
- 批准号:
2237322 - 财政年份:2023
- 资助金额:
$ 15.13万 - 项目类别:
Continuing Grant
CAREER: Computer-Intensive Statistical Inference on High-Dimensional and Massive Data: From Theoretical Foundations to Practical Computations
职业:高维海量数据的计算机密集统计推断:从理论基础到实际计算
- 批准号:
2347760 - 财政年份:2023
- 资助金额:
$ 15.13万 - 项目类别:
Continuing Grant
CAREER: New Statistical Approaches for Studying Evolutionary Processes: Inference, Attribution and Computation
职业:研究进化过程的新统计方法:推理、归因和计算
- 批准号:
2143242 - 财政年份:2022
- 资助金额:
$ 15.13万 - 项目类别:
Continuing Grant
CAREER: Fast and Accurate Statistical Learning and Inference from Large-Scale Data: Theory, Methods, and Algorithms
职业:从大规模数据中快速准确地进行统计学习和推理:理论、方法和算法
- 批准号:
2046874 - 财政年份:2021
- 资助金额:
$ 15.13万 - 项目类别:
Continuing Grant
CAREER: Robust and Efficient Algorithms for Statistical Estimation and Inference
职业:用于统计估计和推理的稳健且高效的算法
- 批准号:
2045068 - 财政年份:2021
- 资助金额:
$ 15.13万 - 项目类别:
Continuing Grant
CAREER: Statistical Inference of Tail Dependent Time Series
职业:尾部相关时间序列的统计推断
- 批准号:
2131821 - 财政年份:2021
- 资助金额:
$ 15.13万 - 项目类别:
Continuing Grant