FSML: Data and Security Infrastructure Improvements to Advance Biological Research at Claytor Nature Center
FSML:改进数据和安全基础设施以推进克莱托自然中心的生物学研究
基本信息
- 批准号:2014292
- 负责人:
- 金额:$ 16.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The mission of the Claytor Nature Center at the University of Lynchburg is to enrich learning about nature through education and research, to promote sustainable human-environment interactions, and to preserve and enhance ecosystem diversity and function. This project will upgrade Claytor's security and information technology infrastructure in order to safeguard research installations and sophisticated equipment used in modern ecological and conservation research. This will allow scientists to carry out high-quality research projects that address important questions about, for example, wetland plant community dynamics, the effects of invasive plants, and the impact of human agricultural and clearcutting activities. Thus, the upgrades will ensure that Claytor expands its relevance as a contributor to ecological and conservation research efforts well into the future. The improvements will also provide richer experiential learning experiences to the center’s many visitors that include students and educators, enhancing Claytor's award-winning environmental education programs for learners of all ages. This is directly responsive to the Virginia Environmental Literacy Challenge, which aims to engage students in experiences and projects that improve their understanding of the environment. The Claytor Nature Center encompasses nearly 500 acres at the base of the Blue Ridge Mountains and is the fourth-largest biological field station in Virginia. The University of Lynchburg's Claytor Nature Center (www.lynchburg.edu/academics/academiccommunity-centers/claytor-nature-center/) occupies a unique and important position among field stations, spanning the geographic, topographic, hydrologic, sub-surface geologic, and ecological flora and fauna of the Blue Ridge and Piedmont provinces in Virginia. The center's core research agenda i the study of diverse natural and human-influenced habitats to inform and improve conservation efforts. This project will modernize the center's security and communication systems by installing electronic entry gates, burglar alarms, and security cameras, as well as fiber optic cable and associated broadband hardware. The security upgrades will safeguard existing research installations and facilitate future installation of sophisticated equipment used in modern ecological and conservation research. Preapproved researchers will be able to enter the center at all times of the day for activities such as tracking wildlife. Security gates and cameras will reduce the risk of vandalism or theft, allowing researchers to set up and leave scientific equipment unattended. Improved communication capability will enable large amounts of research data to be transmitted. This will allow the center’s herbarium to efficiently share images and other datafiles with other institutions in its role as a collaborator on the NSF-funded “Key to the Cabinets” project. Wildlife biology researchers will have increased capacity to manage and share photos and videos, as well as to store and manage data efficiently. Internet-connected remote sensors will make it possible to continuously transmit data from Claytor's weather station. Broadband will enable a future stream gauging station on the Big Otter River with networked remote sensing capacity, thus enhancing water quality research. Increased public outreach capacity, with greater attendance of workshops and other educational programs by students and the public, will help create a citizenry capable of understanding complex problems such as global environmental change and making informed environmental policy decisions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
林奇堡大学Claytor自然中心的使命是通过教育和研究丰富对自然的学习,促进可持续的人类与环境的相互作用,并保护和增强生态系统的多样性和功能。该项目将升级Claytor的安全和信息技术基础设施,以保护现代生态和保护研究中使用的研究设施和先进设备。这将使科学家能够开展高质量的研究项目,解决有关湿地植物群落动态、入侵植物的影响以及人类农业和皆伐活动的影响等重要问题。因此,升级将确保Claytor扩大其作为生态和保护研究工作的贡献者的相关性。这些改进还将为该中心的许多游客提供更丰富的体验式学习体验,包括学生和教育工作者,增强Claytor为所有年龄段的学习者提供的屡获殊荣的环境教育计划。这是直接响应弗吉尼亚州环境素养挑战,其目的是让学生参与的经验和项目,提高他们对环境的理解。Claytor自然中心占地近500英亩,位于蓝岭山脉的底部,是弗吉尼亚州第四大生物野外站。林奇堡大学的Claytor自然中心(www.lynchburg.edu/academics/academiccommunity-centers/claytor-nature-center/)在野外观测站中占据着独特而重要的地位,涵盖了弗吉尼亚州蓝岭和皮埃蒙特省的地理、地形、水文、地下地质和生态植物群和动物群。该中心的核心研究议程是研究各种自然和人类影响的栖息地,以提供信息和改善保护工作。该项目将通过安装电子入口门、防盗报警器和安全摄像头以及光纤电缆和相关的宽带硬件,使中心的安全和通信系统现代化。安全升级将保护现有的研究设施,并促进未来安装用于现代生态和保护研究的先进设备。预先批准的研究人员将能够在一天中的任何时候进入该中心进行跟踪野生动物等活动。安全门和摄像头将减少破坏或盗窃的风险,使研究人员能够设置和离开无人看管的科学设备。通信能力的提高将使大量研究数据得以传输。这将使该中心的植物标本馆能够有效地与其他机构共享图像和其他标本,作为NSF资助的“橱柜钥匙”项目的合作者。野生动物生物学研究人员将有更大的能力来管理和共享照片和视频,以及有效地存储和管理数据。互联网连接的远程传感器将使Claytor气象站的数据连续传输成为可能。宽带将使未来的大水獭河流量测量站与网络遥感能力,从而加强水质研究。公众外展能力的提高,学生和公众对研讨会和其他教育项目的参与率的增加,将有助于培养一个能够理解全球环境变化等复杂问题并做出明智的环境政策决定的公民群体。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Coco其他文献
A Hilbert C*-module for Gabor systems
Gabor 系统的 Hilbert C* 模块
- DOI:
- 发表时间:
2001 - 期刊:
- 影响因子:0
- 作者:
Michael Coco;M. Lammers - 通讯作者:
M. Lammers
Biorthogonal systems in Banach spaces
- DOI:
10.4064/sm165-1-7 - 发表时间:
2003-12 - 期刊:
- 影响因子:0.8
- 作者:
Michael Coco - 通讯作者:
Michael Coco
Michael Coco的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
基于Linked Open Data的Web服务语义互操作关键技术
- 批准号:61373035
- 批准年份:2013
- 资助金额:77.0 万元
- 项目类别:面上项目
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
- 批准号:31070748
- 批准年份:2010
- 资助金额:34.0 万元
- 项目类别:面上项目
高维数据的函数型数据(functional data)分析方法
- 批准号:11001084
- 批准年份:2010
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
染色体复制负调控因子datA在细胞周期中的作用
- 批准号:31060015
- 批准年份:2010
- 资助金额:25.0 万元
- 项目类别:地区科学基金项目
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
REU Site: Enhancing Undergraduate Experiences in Data and Mobile Cloud Security
REU 网站:增强本科生在数据和移动云安全方面的经验
- 批准号:
2349233 - 财政年份:2024
- 资助金额:
$ 16.76万 - 项目类别:
Standard Grant
OAC Core: Enhancing Network Security by Implementing an ML Malware Detection and Classification Scheme in P4 Programmable Data Planes and SmartNICs
OAC 核心:通过在 P4 可编程数据平面和智能网卡中实施 ML 恶意软件检测和分类方案来增强网络安全
- 批准号:
2403360 - 财政年份:2024
- 资助金额:
$ 16.76万 - 项目类别:
Standard Grant
Travel: NSF Student Travel Grant for Financial Cryptography and Data Security 2024 (FC24)
旅行:2024 年 NSF 金融密码学和数据安全学生旅行补助金 (FC24)
- 批准号:
2421161 - 财政年份:2024
- 资助金额:
$ 16.76万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Enabling Data-Driven Security and Safety Analyses for Cyber-Physical Systems
协作研究:CPS:中:为网络物理系统实现数据驱动的安全和安全分析
- 批准号:
2414176 - 财政年份:2023
- 资助金额:
$ 16.76万 - 项目类别:
Standard Grant
Data Driven Cyber Security Incident Prediction for IT SMEs (DaSIPreS)
IT 中小企业数据驱动的网络安全事件预测 (DaSIPreS)
- 批准号:
10077591 - 财政年份:2023
- 资助金额:
$ 16.76万 - 项目类别:
Collaborative R&D
NHLBI ENTERPRISE ARCHITECTURE AND CYBER SECURITY SUPPORT FOR DATA SCIENCE PROGRAMS
NHLBI 数据科学项目的企业架构和网络安全支持
- 批准号:
10974010 - 财政年份:2023
- 资助金额:
$ 16.76万 - 项目类别:
SBIR Phase I: Tackling Healthcare’s Paradoxes: Quality Patient Care, Provider Workflow, and Data Security
SBIR 第一阶段:解决医疗保健悖论:优质患者护理、提供商工作流程和数据安全
- 批准号:
2233197 - 财政年份:2023
- 资助金额:
$ 16.76万 - 项目类别:
Standard Grant
CRII: SaTC: Towards Data-effective and Cost-efficient Security Attack Detections
CRII:SaTC:迈向数据有效且经济高效的安全攻击检测
- 批准号:
2245968 - 财政年份:2023
- 资助金额:
$ 16.76万 - 项目类别:
Standard Grant
Learning Software Security Analysers with Imperfect Data
用不完美的数据学习软件安全分析器
- 批准号:
FT220100391 - 财政年份:2023
- 资助金额:
$ 16.76万 - 项目类别:
ARC Future Fellowships
Data-Driven Approaches for Cyber Security of Critical Infrastructures
关键基础设施网络安全的数据驱动方法
- 批准号:
RGPIN-2020-06482 - 财政年份:2022
- 资助金额:
$ 16.76万 - 项目类别:
Discovery Grants Program - Individual