Collaborative Research: Distributed Mechanism Design with Learning Guarantees: Resource Allocation Among Networked Strategic Agents

协作研究:具有学习保证的分布式机制设计:网络化战略代理之间的资源分配

基本信息

  • 批准号:
    2014816
  • 负责人:
  • 金额:
    $ 22.46万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-01 至 2023-06-30
  • 项目状态:
    已结题

项目摘要

During the last decades there has been significant research in understanding how strategic agents in communication, transportation, energy, economic, societal networks make decisions in the presence of uncertainty about other agents' preferences. This research is motivated by a multitude of applications in our ever-connected society and economy, and the realization that assumptions such as fully-informed or fully-compliant agents are untenable in vastly decentralized networks. The design of incentives for resource allocation problems in the presence of strategic agents falls under the research area of mechanism design (MD). There are two issues with the current state of the art in MD. First, it assumes the existence of a central entity accepting bids and being capable of communicating with each agent. Second, it does not adequately address the question of how agents converge to the designed equilibria. Intellectual Merit: Our overarching objective in this proposal is to create a new subfield of research that addresses these issues in a unified framework. We utilize this framework to design mechanisms that are distributed and have learning (i.e., convergence) guarantees for a sufficiently broad range of agents' behaviors. To achieve our objective, we plan to proceed along a path that blends in fundamental research with targeted applications. In particular, we first investigate the design of distributed mechanisms. We consider two illustrative applications, namely, rate allocation in unicast/multicast-multirate networks and demand management of energy communities. We then investigate distributed mechanisms that incorporate learning guarantees, by which the community reaches an equilibrium. Finally, we study the above two problems in the context of non-Bayesian agents with ``no-regret'' type limited rationality.Broader Impacts: Besides the two illustrative applications, research to be carried in this project will benefit a broad range of practical fields of large societal impact. Examples include smart energy and infrastructure systems, communication systems, cyber physical and human systems, social and economical systems, to name a few. The research outcomes will be utilized for curriculum development, for training undergraduate and graduate students, and for various outreach activities at the PIs’ institutions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在过去的几十年里,有大量的研究来理解在通信、交通、能源、经济、社会网络中的战略代理人如何在其他代理人偏好不确定的情况下做出决策。这项研究的动机是在我们不断连接的社会和经济中的大量应用,以及认识到诸如完全知情或完全顺从的代理人等假设在非常分散的网络中是站不住脚的。存在战略代理人的资源配置问题的激励设计福尔斯机制设计(MD)的研究领域。MD的当前技术水平存在两个问题。首先,它假设存在一个接受投标并能够与每个代理人通信的中央实体。其次,它没有充分解决代理人如何收敛到设计的均衡的问题。智力优势:我们在这项提案中的总体目标是创建一个新的研究子领域,在一个统一的框架中解决这些问题。我们利用这个框架来设计分布式和学习的机制(即,收敛)保证了足够广泛的代理行为。为了实现我们的目标,我们计划沿着一条将基础研究与目标应用相结合的道路前进。特别是,我们首先研究分布式机制的设计。我们考虑两个说明性的应用程序,即,在单播/组播多速率网络的速率分配和能源社区的需求管理。然后,我们调查分布式机制,将学习保证,社区达到一个平衡。最后,我们研究了上述两个问题的背景下,非贝叶斯代理与“无遗憾”型有限rationality.Broader影响:除了这两个说明性的应用,在这个项目中进行的研究将有利于广泛的实际领域的大社会影响。示例包括智能能源和基础设施系统、通信系统、网络物理和人类系统、社会和经济系统等。研究成果将用于课程开发、本科生和研究生的培训以及PI机构的各种外展活动。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Distributed Off-Policy Temporal Difference Learning Using Primal-Dual Method
  • DOI:
    10.1109/access.2022.3211395
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Donghwan Lee;Do Wan Kim;Jianghai Hu
  • 通讯作者:
    Donghwan Lee;Do Wan Kim;Jianghai Hu
Distributed Computation of Stochastic GNE With Partial Information: An Augmented Best-Response Approach
具有部分信息的随机 GNE 的分布式计算:一种增强的最佳响应方法
Global and Local Convergence Analysis of a Bandit Learning Algorithm in Merely Coherent Games
  • DOI:
    10.1109/ojcsys.2023.3316071
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yuanhanqing Huang;Jianghai Hu
  • 通讯作者:
    Yuanhanqing Huang;Jianghai Hu
A Discrete-Time Switching System Analysis of Q-Learning
Q-Learning的离散时间切换系统分析
A Distributed Douglas-Rachford Based Algorithm for Stochastic GNE Seeking with Partial Information
基于Douglas-Rachford的分布式部分信息随机GNE搜索算法
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jianghai Hu其他文献

On sensor scheduling of linear dynamical systems with error bounds
具有误差界限的线性动力系统的传感器调度
  • DOI:
    10.1109/cdc.2010.5717207
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Vitus;Wei Zhang;A. Abate;Jianghai Hu;C. Tomlin
  • 通讯作者:
    C. Tomlin
Q-switched output in vertical external cavity surface emitting lasers
垂直外腔表面发射激光器中的调Q输出
  • DOI:
    10.1117/12.693643
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Weiming Yu;Yanrong Song;Jianghai Hu;Yong;Xiaodong Bai;Zhigang Zhang
  • 通讯作者:
    Zhigang Zhang
GraphControl LyapunovFunction for Stabilization of Discrete-TimeSwitchedLinear Systems ⋆
用于稳定离散时间切换线性系统的 GraphControl Lyapunov 函数 ⋆
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Donghwan Lee;Jianghai Hu
  • 通讯作者:
    Jianghai Hu
Development of a plug-and-play multiple RTU coordination control algorithm for small/medium commercial buildings
中小型商业建筑即插即用多RTU协调控制算法开发
Optimizing formation rigidity under connectivity constraints
在连通性约束下优化地层刚性

Jianghai Hu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jianghai Hu', 18)}}的其他基金

CPS: Synergy: Plug-and-Play Cyber-Physical Systems to Enable Intelligent Buildings
CPS:协同:即插即用的网络物理系统支持智能建筑
  • 批准号:
    1329875
  • 财政年份:
    2014
  • 资助金额:
    $ 22.46万
  • 项目类别:
    Standard Grant
CAREER: Reachability Analysis and Optimization of Stochastic Hybrid Systems
职业:随机混合系统的可达性分析和优化
  • 批准号:
    0643805
  • 财政年份:
    2007
  • 资助金额:
    $ 22.46万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
  • 批准号:
    2331710
  • 财政年份:
    2024
  • 资助金额:
    $ 22.46万
  • 项目类别:
    Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
  • 批准号:
    2331711
  • 财政年份:
    2024
  • 资助金额:
    $ 22.46万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Medium: The Communication Cost of Distributed Computation
合作研究:AF:媒介:分布式计算的通信成本
  • 批准号:
    2402836
  • 财政年份:
    2024
  • 资助金额:
    $ 22.46万
  • 项目类别:
    Continuing Grant
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
  • 批准号:
    2403312
  • 财政年份:
    2024
  • 资助金额:
    $ 22.46万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
  • 批准号:
    2403313
  • 财政年份:
    2024
  • 资助金额:
    $ 22.46万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Medium: The Communication Cost of Distributed Computation
合作研究:AF:媒介:分布式计算的通信成本
  • 批准号:
    2402837
  • 财政年份:
    2024
  • 资助金额:
    $ 22.46万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: The Communication Cost of Distributed Computation
合作研究:AF:媒介:分布式计算的通信成本
  • 批准号:
    2402835
  • 财政年份:
    2024
  • 资助金额:
    $ 22.46万
  • 项目类别:
    Continuing Grant
Collaborative Research: CyberTraining: Implementation:Medium: Modern Course Exemplars infused with Parallel and Distributed Computing for the Introductory Computing Course Sequence
协作研究:网络培训:实施:中:为入门计算课程序列注入并行和分布式计算的现代课程范例
  • 批准号:
    2321017
  • 财政年份:
    2023
  • 资助金额:
    $ 22.46万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
  • 批准号:
    2348159
  • 财政年份:
    2023
  • 资助金额:
    $ 22.46万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Technical Debt Management in Dynamic and Distributed Systems
合作研究:SHF:小型:动态和分布式系统中的技术债务管理
  • 批准号:
    2232720
  • 财政年份:
    2023
  • 资助金额:
    $ 22.46万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了