Analyzing Dependent Extremes via Joint Quantile Regression

通过联合分位数回归分析相关极值

基本信息

  • 批准号:
    2014861
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-01 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

What is common between Hurricane Harvey and the Great Recession? Both are examples of ordinary and loosely connected processes attaining extraordinary levels in a synchronized manner. Accurately predicting the size and frequency of synchronized extreme outcomes is crucial to robust risk management. But this task remains a difficult challenge to data science that has been mostly built around the notions of average behavior and independence. A case in point is regression analyses where one studies how a group of outcomes are simultaneously influenced by a common set of predictors. Current statistical methods can either address inter-dependency between multiple outcomes, or model transitions from ordinary to extraordinary levels of a single outcome. But nothing satisfactory exists to handle both. This research fills this gap with new data analysis tools based on quantile driven regression analysis. The new tools are specialized for analyzing data recorded over space and time or within network clusters. They are subjected to detailed mathematical scrutiny for accuracy and reliability. Applications to finance and environmental sciences are carried out to assess the usefulness of the new tools in scientific investigation and policy making. The project integrates statistical research with software development and graduate education. Quantiles are simply percentiles expressed in terms of a level varying from zero through one, as opposed to a percentage point. The quantiles of a variable give direct access to its smooth transitions between ordinary and extraordinary levels. In standard quantile regression, one estimates the effects of predictors at any given quantile level of an outcome. Such estimation is easy to carry out when observation units are mutually independent; there is no need of a detailed probabilistic model for the predictor-outcome relation. But data with known dependency structures present a far more complex challenge; accurate estimation requires adjusting for intrinsic noise correlation between units in close proximity. Such a task remains beyond the scope of ordinary quantile regression methods due to their model-free nature and their focus on single quantiles in isolation. In contrast, joint quantile regression makes this task feasible by incorporating a full probabilistic model for the outcome and enabling a joint estimation at all quantile levels at once. The research investigates the use of copula modeling to address noise correlation in joint quantile regression, focusing greatly on appropriate customization of the copula formulation for each data type. A rigorous asymptotic analysis is carried out toward statistical guarantees of the resulting tools. Quantitative and visualization-based diagnostic tools will be developed for model assessment and selection. All tools will be incorporated in the R package “qrjoint” available through The Comprehensive R Archive Network.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
飓风哈维和经济大衰退有什么共同之处?两者都是普通和松散连接的进程以同步方式达到非凡水平的例子。准确预测同步极端后果的规模和频率对于健全的风险管理至关重要。但对于数据科学来说,这项任务仍然是一个艰巨的挑战,因为数据科学主要是围绕平均行为和独立的概念建立的。一个恰当的例子是回归分析,其中研究一组结果如何同时受到一组共同预测因子的影响。目前的统计方法既可以解决多个结果之间的相互依赖关系,也可以对单个结果从普通水平到特殊水平的转变进行建模。但没有什么令人满意的东西可以同时处理这两个问题。本研究利用基于分位数驱动回归分析的新数据分析工具填补了这一空白。这些新工具专门用于分析跨越空间和时间或在网络集群内记录的数据。它们的准确性和可靠性都要经过详细的数学检验。应用于金融和环境科学,评估新工具在科学调查和政策制定中的有用性。该项目将统计研究与软件开发和研究生教育相结合。分位数只是用从0到1的变化水平表示的百分位数,而不是一个百分点。变量的分位数直接反映了它在普通水平和特殊水平之间的平稳过渡。在标准分位数回归中,人们估计预测因子在结果的任何给定分位数水平上的影响。当观测单元相互独立时,这种估计容易进行;预测-结果关系不需要详细的概率模型。但是,具有已知依赖结构的数据所面临的挑战要复杂得多;准确的估计需要调整近距离单元之间的固有噪声相关性。由于普通分位数回归方法的无模型性质以及它们孤立地关注单个分位数,因此这种任务仍然超出了普通分位数回归方法的范围。相比之下,联合分位数回归通过结合结果的完整概率模型并同时在所有分位数水平上进行联合估计,使这项任务变得可行。该研究探讨了在联合分位数回归中使用copula建模来解决噪声相关性的问题,重点是为每种数据类型定制适当的copula公式。对所得工具的统计保证进行了严格的渐近分析。将开发用于模型评估和选择的定量和可视化诊断工具。所有的工具都将被整合到R包“qrjoint”中,可以通过综合R档案网络获得。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Heavy-Tailed Density Estimation
  • DOI:
    10.1080/01621459.2022.2104727
  • 发表时间:
    2022-07
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    S. Tokdar;Sheng Jiang;Erika L Cunningham
  • 通讯作者:
    S. Tokdar;Sheng Jiang;Erika L Cunningham
Joint quantile regression for spatial data
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Surya Tokdar其他文献

Surya Tokdar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Surya Tokdar', 18)}}的其他基金

Understanding Regression Heterogeneity Through Joint Estimation of Conditional Quantiles
通过条件分位数的联合估计了解回归异质性
  • 批准号:
    1613173
  • 财政年份:
    2016
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant

相似国自然基金

当归芍药散基于双向调控Ras/cAMP-dependent PKA自噬通路的“酸甘化阴、辛甘化阳”的药性基础
  • 批准号:
    81973497
  • 批准年份:
    2019
  • 资助金额:
    55.0 万元
  • 项目类别:
    面上项目
蒺藜苜蓿细胞周期蛋白依赖性激酶(cyclin-dependent kinase)对根瘤发育的功能研究
  • 批准号:
    31100871
  • 批准年份:
    2011
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
Posphoinositide-dependent kinase-1在肿瘤细胞趋化运动和转移中的作用机制
  • 批准号:
    30772529
  • 批准年份:
    2007
  • 资助金额:
    29.0 万元
  • 项目类别:
    面上项目

相似海外基金

Conference: 2024 Photosensory Receptors and Signal Transduction GRC/GRS: Light-Dependent Molecular Mechanism, Cellular Response and Organismal Behavior
会议:2024光敏受体和信号转导GRC/GRS:光依赖性分子机制、细胞反应和生物体行为
  • 批准号:
    2402252
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Non-Born-Oppenheimer Effects in the Framework of Multicomponent Time-Dependent Density Functional Theory
多分量时变密度泛函理论框架中的非玻恩奥本海默效应
  • 批准号:
    2415034
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
CAREER: Chemoenzymatic Synthesis of Complex Polycyclic Alkaloids Enabled by A-Ketoglutarate Dependent Iron Enzymes
职业:通过 A-酮戊二酸依赖性铁酶实现复杂多环生物碱的化学酶法合成
  • 批准号:
    2338495
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Resolving the Role of Brain Lymphatic Endothelial Cells in Sleep Dependent Brain Clearance
解决脑淋巴内皮细胞在睡眠依赖性脑清除中的作用
  • 批准号:
    BB/Y001206/1
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Research Grant
An explainability oriented approach to manage dependent supply chain risks
一种以可解释性为导向的方法来管理相关供应链风险
  • 批准号:
    LP230100379
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Linkage Projects
Molecular mechanism of the PRC-dependent RNA degradation by the rixosome
核糖体PRC依赖性RNA降解的分子机制
  • 批准号:
    DP240101212
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Discovery Projects
Elucidating type 1 conventional dendritic cell-dependent anti-tumour immune responses in brain metastases
阐明脑转移瘤中 1 型传统树突状细胞依赖性抗肿瘤免疫反应
  • 批准号:
    MR/Y013328/1
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Research Grant
Planning: FIRE-PLAN: Merging diverse knowledge systems to advance restoration of fire-dependent forests in the Great Lakes region
规划:FIRE-PLAN:融合不同的知识系统,推进五大湖地区依赖火灾的森林的恢复
  • 批准号:
    2335838
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Sea-state-dependent drag parameterization through experiments and data-driven modeling
合作研究:通过实验和数据驱动建模进行与海况相关的阻力参数化
  • 批准号:
    2404369
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Sea-state-dependent drag parameterization through experiments and data-driven modeling
合作研究:通过实验和数据驱动建模进行与海况相关的阻力参数化
  • 批准号:
    2404368
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了