Novel Inference Procedures for Non-Standard High-Dimensional Regression Models

非标准高维回归模型的新颖推理程序

基本信息

  • 批准号:
    2015120
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-01 至 2023-06-30
  • 项目状态:
    已结题

项目摘要

Statistical theory of hypothesis testing plays a fundamental role in virtually all scientific studies. In the era of big data, high-dimensional data are ubiquitous in many scientific fields such as natural sciences, social sciences, medicine, and public health. Therefore, modern applications often involve hypothesis testing under high dimensions, which calls for new statistical inference theory. As regression is the most popular statistical analysis tool in applications, some recent work has been focused on hypothesis testing in high dimensional least squares regression. However, it is well-known that the standard least squares regression model has severe limitations in real applications. This research aims to develop new statistical inference theory for more flexible high dimensional regression models. This research focuses on the development of inference theory for several important non-standard regression models under ultra-high dimensions. Specifically, the PI will develop tests for testing linear hypotheses under three models: high dimensional expectile regression, high dimensional heteroscedastic regression, and robust high dimensional regression. Asymptotic distributions of the test statistics will be established rigorously. The theoretical study will fill important gaps in the high-dimensional statistics literature. A unified efficient algorithm will be developed to tackle the computational challenges. The research will provide principled tools for studying expectile functions, for examining the heterogeneity in high dimensional data and for performing robust inference. Research training opportunities for graduate students will be provided.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
假设检验的统计理论在几乎所有的科学研究中都起着基础作用。在大数据时代,高维数据在自然科学、社会科学、医学、公共卫生等诸多科学领域无处不在。因此,现代应用往往涉及高维下的假设检验,这就需要新的统计推断理论。由于回归是应用最广泛的统计分析工具,近年来一些研究工作集中在高维最小二乘回归的假设检验上。然而,众所周知,标准最小二乘回归模型在实际应用中有严重的局限性。本研究旨在为更灵活的高维回归模型发展新的统计推理理论。本文主要研究了几种重要的超高维非标准回归模型的推理理论的发展。具体而言,PI将在三种模型下开发测试线性假设的测试:高维期望回归,高维异方差回归和稳健高维回归。检验统计量的渐近分布将被严格地建立。理论研究将填补高维统计文献的重要空白。将开发一个统一的高效算法来解决计算方面的挑战。该研究将为研究期望函数、检查高维数据的异质性和执行稳健推理提供原则性工具。为研究生提供科研训练机会。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Exactly Uncorrelated Sparse Principal Component Analysis
完全不相关的稀疏主成分分析
Expectile regression via deep residual networks
  • DOI:
    10.1002/sta4.315
  • 发表时间:
    2020-09
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Yiyi Yin;H. Zou
  • 通讯作者:
    Yiyi Yin;H. Zou
Fast and Exact Leave-One-Out Analysis of Large-Margin Classifiers
大余量分类器的快速准确留一分析
  • DOI:
    10.1080/00401706.2021.1967199
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Wang, Boxiang;Zou, Hui
  • 通讯作者:
    Zou, Hui
Coordinatewise Gaussianization: Theories and Applications
坐标高斯化:理论与应用
A Simple Method for Estimating Gaussian Graphical Models
一种估计高斯图模型的简单方法
  • DOI:
    10.5705/ss.202021.0273
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Yin, Yiyi;Song, Yang;Zou, Hui
  • 通讯作者:
    Zou, Hui
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hui Zou其他文献

Effect of amino acids on formation of pigment precursors in garlic discoloration using UPLC–ESI-Q-TOF-MS analysis
使用 UPLC-ESI-Q-TOF-MS 分析氨基酸对大蒜变色过程中色素前体形成的影响
  • DOI:
    10.1016/j.jfca.2021.104231
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Ruixuan Zhao;Hui Zou;Renjie Zhao;Ningyang Li;Zhenjia Zheng;X. Qiao
  • 通讯作者:
    X. Qiao
The Oxidation and Combustion Properties of Gas Atomized Aluminum−Boron−Europium Alloy Powders
气雾化铝硼铕合金粉末的氧化和燃烧性能
Dietary inulin alleviated constipation induced depression and anxiety-like behaviors: Involvement of gut microbiota and microbial metabolite short-chain fatty acid
  • DOI:
    https://doi.org/10.1016/j.ijbiomac.2024.129420
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    8.2
  • 作者:
    Hui Zou;Huajing Gao;Yanhong Liu;Zhiwo Zhang;Jia Zhao;Wenxuan Wang;Bo Ren;Xintong Tan
  • 通讯作者:
    Xintong Tan
TRIM 9 is up-regulated in human lung cancer and involved in cell proliferation and apoptosis
TRIM 9 在人肺癌中表达上调并参与细胞增殖和凋亡
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiaolin Wang;Y. Shu;Hongcan Shi;Shichun Lu;Kang Wang;Chao Sun;Jiansheng He;Weiguo Jin;X. Lv;Hui Zou;Weiping Shi
  • 通讯作者:
    Weiping Shi
p53 positively regulates osteoprotegerin-mediated inhibition of osteoclastogenesis by downregulating TSC2-induced autophagy in vitro
  • DOI:
    doi: 10.1016/j.diff.2020.06.002.
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
  • 作者:
    Xishuai Tong;Jianhong Gu;Miaomiao Chen;Tao Wang;Hui Zou;Ruilong Song;Hongyan Zhao;Jianchun Bian;Zongping Liu
  • 通讯作者:
    Zongping Liu

Hui Zou的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hui Zou', 18)}}的其他基金

IMR: MM-1A: Evolutionary Modeling and Acquisition of Multidimensional 5G Internet Measurements
IMR:MM-1A:多维 5G 互联网测量的演化建模和获取
  • 批准号:
    2220286
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Flexible Statistical Modelling for High Dimensional Data
高维数据的灵活统计建模
  • 批准号:
    1915842
  • 财政年份:
    2019
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: New Statistical Methods and Theory for High-Dimensional Data
合作研究:高维数据的新统计方法和理论
  • 批准号:
    1505111
  • 财政年份:
    2015
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
CAREER: New Statistical Methodology and Theory for Mining High-Dimensional Data
职业:挖掘高维数据的新统计方法和理论
  • 批准号:
    0846068
  • 财政年份:
    2009
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Statistical Modeling with High-dimensional Data: Variable Selection and Regularization
高维数据统计建模:变量选择和正则化
  • 批准号:
    0706733
  • 财政年份:
    2007
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant

相似海外基金

Statistical Procedures and Performance Measures for Simulator-Based Frequentist Inference
基于模拟器的频率推理的统计程序和性能测量
  • 批准号:
    2053804
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Development of multiple robust inference procedures for net survival
开发多种稳健的净生存推理程序
  • 批准号:
    20K19754
  • 财政年份:
    2020
  • 资助金额:
    $ 15万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
On Conditional Statistical Procedures for Simultaneous Model Selection, Inference, and Prediction in Complex Climate Systems
复杂气候系统中同时模型选择、推理和预测的条件统计程序
  • 批准号:
    1622483
  • 财政年份:
    2016
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
"Bootstrap, confidence sets, and asymptotic analysis for some procedures of statistical inference"
“一些统计推断过程的引导、置信集和渐近分析”
  • 批准号:
    261347-2012
  • 财政年份:
    2016
  • 资助金额:
    $ 15万
  • 项目类别:
    Discovery Grants Program - Individual
"Bootstrap, confidence sets, and asymptotic analysis for some procedures of statistical inference"
“一些统计推断过程的引导、置信集和渐近分析”
  • 批准号:
    261347-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 15万
  • 项目类别:
    Discovery Grants Program - Individual
"Bootstrap, confidence sets, and asymptotic analysis for some procedures of statistical inference"
“一些统计推断过程的引导、置信集和渐近分析”
  • 批准号:
    261347-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 15万
  • 项目类别:
    Discovery Grants Program - Individual
"Bootstrap, confidence sets, and asymptotic analysis for some procedures of statistical inference"
“一些统计推断过程的引导、置信集和渐近分析”
  • 批准号:
    261347-2012
  • 财政年份:
    2013
  • 资助金额:
    $ 15万
  • 项目类别:
    Discovery Grants Program - Individual
"Bootstrap, confidence sets, and asymptotic analysis for some procedures of statistical inference"
“一些统计推断过程的引导、置信集和渐近分析”
  • 批准号:
    261347-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 15万
  • 项目类别:
    Discovery Grants Program - Individual
Bootstrap, asymptotic analysis, and risk comparison of some procedures of statistical inference
Bootstrap、渐近分析以及某些统计推断程序的风险比较
  • 批准号:
    261347-2008
  • 财政年份:
    2011
  • 资助金额:
    $ 15万
  • 项目类别:
    Discovery Grants Program - Individual
Development of Some Multivariate Statistical Inference Procedures for Missing and High Dimensional Data and Its Application
缺失和高维数据的一些多元统计推断程序的开发及其应用
  • 批准号:
    23500360
  • 财政年份:
    2011
  • 资助金额:
    $ 15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了