Flexible Statistical Modelling for High Dimensional Data
高维数据的灵活统计建模
基本信息
- 批准号:1915842
- 负责人:
- 金额:$ 17.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Scientific and technology innovations have made massive high-dimensional data ubiquitous in various fields, such as biological science, medical studies, public health, social sciences, e-commerce, finance, climate studies, and so on. During the past decade statisticians have developed a rich collection of new tools for high-dimensional statistical modeling. Despite these important advances, there are still many challenges and open problems to be dealt with in high-dimensional data analysis. Their solutions require innovative ideas and techniques to handle the methodological, computational and theoretical challenges. The goal of this research is to develop mathematically solid and computationally efficient methods to address these pressing and important inferential challenges. This research consists of three projects. The first project concerns measurement errors in high-dimensional M-estimation. The PI will study a new unified convex approach to solve the error-in-variables penalized M-regression including Huber regression, logistic regression, quantile regression, and the support vector machine. In the second project the PI will establish a new inference tool named composite M-estimation and demonstrate its applications in high-dimensional learning. In the third project the PI will study a flexible heterogeneity pursuit method for understanding the heterogeneity effects in high-dimensional data. Software packages will be created to make the new methods readily available to other researchers and practitioners.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着科学技术的发展,高维数据在生物科学、医学研究、公共卫生、社会科学、电子商务、金融、气候研究等各个领域中无处不在,统计学家们在过去的十年中开发了大量的高维统计建模工具。尽管有这些重要的进展,仍然有许多挑战和开放的问题要处理在高维数据分析。他们的解决方案需要创新的想法和技术来应对方法,计算和理论挑战。这项研究的目标是开发数学上可靠和计算效率高的方法来解决这些紧迫和重要的推理挑战。本研究包括三个项目。第一个项目涉及高维M-估计中的测量误差。PI将研究一种新的统一凸方法来解决变量中的错误惩罚M-回归,包括Huber回归,逻辑回归,分位数回归和支持向量机。在第二个项目中,PI将建立一个新的推理工具,称为复合M-估计,并展示其在高维学习中的应用。在第三个项目中,PI将研究一种灵活的异质性追踪方法,用于理解高维数据中的异质性效应。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Expectile regression via deep residual networks
- DOI:10.1002/sta4.315
- 发表时间:2020-09
- 期刊:
- 影响因子:1.7
- 作者:Yiyi Yin;H. Zou
- 通讯作者:Yiyi Yin;H. Zou
Fast and Exact Leave-One-Out Analysis of Large-Margin Classifiers
大余量分类器的快速准确留一分析
- DOI:10.1080/00401706.2021.1967199
- 发表时间:2022
- 期刊:
- 影响因子:2.5
- 作者:Wang, Boxiang;Zou, Hui
- 通讯作者:Zou, Hui
Sparse Composite Quantile Regression in Ultrahigh Dimensions With Tuning Parameter Calibration
- DOI:10.1109/tit.2020.3001090
- 发表时间:2020-11-01
- 期刊:
- 影响因子:2.5
- 作者:Gu, Yuwen;Zou, Hui
- 通讯作者:Zou, Hui
Exactly Uncorrelated Sparse Principal Component Analysis
完全不相关的稀疏主成分分析
- DOI:10.1080/10618600.2023.2232843
- 发表时间:2023
- 期刊:
- 影响因子:2.4
- 作者:Kwon, Oh-Ran;Lu, Zhaosong;Zou, Hui
- 通讯作者:Zou, Hui
A simple method to improve principal components regression
- DOI:10.1002/sta4.288
- 发表时间:2020-01-01
- 期刊:
- 影响因子:1.7
- 作者:Lang, Wenjun;Zou, Hui
- 通讯作者:Zou, Hui
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hui Zou其他文献
Coordinatewise Gaussianization: Theories and Applications
坐标高斯化:理论与应用
- DOI:
10.1080/01621459.2022.2044825 - 发表时间:
2022-02 - 期刊:
- 影响因子:3.7
- 作者:
Qing Mai;Di He;Hui Zou - 通讯作者:
Hui Zou
The Oxidation and Combustion Properties of Gas Atomized Aluminum−Boron−Europium Alloy Powders
气雾化铝硼铕合金粉末的氧化和燃烧性能
- DOI:
10.1002/prep.201800223 - 发表时间:
2019-06 - 期刊:
- 影响因子:0
- 作者:
Wei Wang;Hui Zou;Shuizhou Cai - 通讯作者:
Shuizhou Cai
Effect of amino acids on formation of pigment precursors in garlic discoloration using UPLC–ESI-Q-TOF-MS analysis
使用 UPLC-ESI-Q-TOF-MS 分析氨基酸对大蒜变色过程中色素前体形成的影响
- DOI:
10.1016/j.jfca.2021.104231 - 发表时间:
2021 - 期刊:
- 影响因子:4.3
- 作者:
Ruixuan Zhao;Hui Zou;Renjie Zhao;Ningyang Li;Zhenjia Zheng;X. Qiao - 通讯作者:
X. Qiao
TRIM 9 is up-regulated in human lung cancer and involved in cell proliferation and apoptosis
TRIM 9 在人肺癌中表达上调并参与细胞增殖和凋亡
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Xiaolin Wang;Y. Shu;Hongcan Shi;Shichun Lu;Kang Wang;Chao Sun;Jiansheng He;Weiguo Jin;X. Lv;Hui Zou;Weiping Shi - 通讯作者:
Weiping Shi
p53 positively regulates osteoprotegerin-mediated inhibition of osteoclastogenesis by downregulating TSC2-induced autophagy in vitro
- DOI:
doi: 10.1016/j.diff.2020.06.002. - 发表时间:
2020 - 期刊:
- 影响因子:
- 作者:
Xishuai Tong;Jianhong Gu;Miaomiao Chen;Tao Wang;Hui Zou;Ruilong Song;Hongyan Zhao;Jianchun Bian;Zongping Liu - 通讯作者:
Zongping Liu
Hui Zou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hui Zou', 18)}}的其他基金
IMR: MM-1A: Evolutionary Modeling and Acquisition of Multidimensional 5G Internet Measurements
IMR:MM-1A:多维 5G 互联网测量的演化建模和获取
- 批准号:
2220286 - 财政年份:2022
- 资助金额:
$ 17.95万 - 项目类别:
Standard Grant
Novel Inference Procedures for Non-Standard High-Dimensional Regression Models
非标准高维回归模型的新颖推理程序
- 批准号:
2015120 - 财政年份:2020
- 资助金额:
$ 17.95万 - 项目类别:
Standard Grant
Collaborative Research: New Statistical Methods and Theory for High-Dimensional Data
合作研究:高维数据的新统计方法和理论
- 批准号:
1505111 - 财政年份:2015
- 资助金额:
$ 17.95万 - 项目类别:
Continuing Grant
CAREER: New Statistical Methodology and Theory for Mining High-Dimensional Data
职业:挖掘高维数据的新统计方法和理论
- 批准号:
0846068 - 财政年份:2009
- 资助金额:
$ 17.95万 - 项目类别:
Continuing Grant
Statistical Modeling with High-dimensional Data: Variable Selection and Regularization
高维数据统计建模:变量选择和正则化
- 批准号:
0706733 - 财政年份:2007
- 资助金额:
$ 17.95万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Practical algorithms and high dimensional statistical methods for multimodal haplotype modelling
职业:多模态单倍型建模的实用算法和高维统计方法
- 批准号:
2239870 - 财政年份:2023
- 资助金额:
$ 17.95万 - 项目类别:
Standard Grant
Microfluidic modelling and optimisation of statistical design for shape measurement in resistive pulse sensing: pilot project
电阻脉冲传感中形状测量的微流体建模和统计设计优化:试点项目
- 批准号:
EP/W006294/1 - 财政年份:2022
- 资助金额:
$ 17.95万 - 项目类别:
Research Grant
Modelling modern data objects: statistical methods for high-dimensionality and intricate correlation structures
现代数据对象建模:高维和复杂相关结构的统计方法
- 批准号:
RGPIN-2020-06941 - 财政年份:2022
- 资助金额:
$ 17.95万 - 项目类别:
Discovery Grants Program - Individual
Improving Statistical Machine Learning approaches for Time-to-Event Prediction Modelling
改进事件时间预测建模的统计机器学习方法
- 批准号:
2722161 - 财政年份:2022
- 资助金额:
$ 17.95万 - 项目类别:
Studentship
Integrative Statistical Modelling in Genetics and Genomics
遗传学和基因组学的综合统计模型
- 批准号:
RGPIN-2020-05896 - 财政年份:2022
- 资助金额:
$ 17.95万 - 项目类别:
Discovery Grants Program - Individual
Statistical Modelling of Complex Spatial Extreme Phenomena
复杂空间极端现象的统计建模
- 批准号:
RGPIN-2022-05001 - 财政年份:2022
- 资助金额:
$ 17.95万 - 项目类别:
Discovery Grants Program - Individual
Statistical Modelling of Complex Spatial Extreme Phenomena
复杂空间极端现象的统计建模
- 批准号:
DGECR-2022-00461 - 财政年份:2022
- 资助金额:
$ 17.95万 - 项目类别:
Discovery Launch Supplement
Statistical Modelling of Infectious Disease and Environmental Systems
传染病和环境系统的统计模型
- 批准号:
RGPIN-2018-04701 - 财政年份:2022
- 资助金额:
$ 17.95万 - 项目类别:
Discovery Grants Program - Individual
Statistical Inference and Modelling for Complex Data
复杂数据的统计推断和建模
- 批准号:
RGPIN-2018-06459 - 财政年份:2022
- 资助金额:
$ 17.95万 - 项目类别:
Discovery Grants Program - Individual
Statistical Modelling of Watershed Data
流域数据的统计建模
- 批准号:
574287-2022 - 财政年份:2022
- 资助金额:
$ 17.95万 - 项目类别:
University Undergraduate Student Research Awards