Learning from Hidden Signatures in High-Dimensional Models
从高维模型中的隐藏签名中学习
基本信息
- 批准号:2015195
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Methods directly applicable to the determination of regulatory cell mechanisms associated with vaccine responses will be developed as an integral part of this project. Such mechanisms are not directly observable or measurable, but a wealth of indirect measurements can be obtained, for instance on antibody titer-driven effects. New methodology, that meets the challenge of extracting these hidden signals from a very large volume of data, consisting of a diverse arrays of indirect measurements, are developed and put to test immediately, for emerging pandemics data sets. More broadly, techniques that allow for reliable, mathematically grounded, inference and prediction from essential, but hidden, signatures will be developed and applied to data sets arising from neuroscience and high-throughput text data. A foundational study of inference and prediction from high-dimensional data with low-dimensional embeddings modeled by factor models are undertaken in this project. Within new classes of identifiable factor regression models in which the latent factors are interpretable, new scalable methods for estimating the regression coefficients of the latent factors will be developed. Optimality of estimation from a finite-sample, minimax perspective, as well as the derivation of the asymptotic limit of the estimates, and especially of their efficient asymptotic variance will be a cornerstone of research under this project. Prediction from high-dimensional dependent features, with reduced-effective-rank covariance matrix, will be analyzed under generic factor regression models. In particular, interpolating predictors, popular in deep-learning, will be contrasted with other contenders, with the aim of offering fundamental understanding of model-free versus model-based prediction, when data arises from a factor regression model. Sparse topic models, together with inference and prediction from the hidden topics, will be studied as companion models for data in which all the features are discrete. Applications of the newly developed, scalable and theoretically founded methods will constitute a focal point of this project.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
将开发直接适用于确定与疫苗反应相关的调节细胞机制的方法,作为该项目的一个组成部分。这种机制不能直接观察或测量,但可以获得大量的间接测量,例如抗体滴度驱动效应。为应对从由各种间接测量数据组成的大量数据中提取这些隐藏信号的挑战,开发了新的方法,并立即对新出现的大流行病数据集进行了测试。更广泛地说,从基本但隐藏的特征中进行可靠的、基于数学的推断和预测的技术将被开发出来,并应用于神经科学和高通量文本数据产生的数据集。本课题对基于因子模型建模的低维嵌入的高维数据进行推理和预测的基础研究。在可识别因素回归模型的新类别中,潜在因素是可解释的,将开发新的可扩展方法来估计潜在因素的回归系数。有限样本极小极大估计的最优性,以及估计的渐近极限的推导,特别是其有效渐近方差的推导将是本项目研究的基石。利用降低有效秩协方差矩阵的高维相关特征进行预测,将在通用因子回归模型下进行分析。特别是,深度学习中流行的内插预测器将与其他竞争者进行对比,目的是在数据来自因子回归模型时,提供对无模型预测和基于模型预测的基本理解。稀疏主题模型以及隐藏主题的推断和预测将作为所有特征都是离散的数据的伴侣模型进行研究。新开发的、可扩展的和理论上成立的方法的应用将构成这个项目的重点。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Likelihood estimation of sparse topic distributions in topic models and its applications to Wasserstein document distance calculations
- DOI:10.1214/22-aos2229
- 发表时间:2021-07
- 期刊:
- 影响因子:0
- 作者:Xin Bing;F. Bunea;Seth Strimas-Mackey;M. Wegkamp
- 通讯作者:Xin Bing;F. Bunea;Seth Strimas-Mackey;M. Wegkamp
Prediction Under Latent Factor Regression: Adaptive PCR, Interpolating Predictors and Beyond
潜在因子回归下的预测:自适应 PCR、内插预测因子等
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:6
- 作者:Bing, X.;Bunea, F.;Strimas-Mackey, S.;Wegkamp, M.
- 通讯作者:Wegkamp, M.
Optimal Estimation of Sparse Topic Models
稀疏主题模型的最优估计
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:6
- 作者:Bing, X;Bunea, F;Wegkamp, M
- 通讯作者:Wegkamp, M
Inference in latent factor regression with clusterable features
具有可聚类特征的潜在因子回归推理
- DOI:10.3150/21-bej1374
- 发表时间:2022
- 期刊:
- 影响因子:1.5
- 作者:Bing, Xin;Bunea, Florentina;Wegkamp, Marten
- 通讯作者:Wegkamp, Marten
Detecting approximate replicate components of a high-dimensional random vector with latent structure
检测具有潜在结构的高维随机向量的近似重复分量
- DOI:10.3150/22-bej1502
- 发表时间:2023
- 期刊:
- 影响因子:1.5
- 作者:Bing, Xin;Bunea, Florentina;Wegkamp, Marten
- 通讯作者:Wegkamp, Marten
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Florentina Bunea其他文献
Florentina Bunea的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Florentina Bunea', 18)}}的其他基金
Collaborative Research: Statistical Optimal Transport in High Dimensional Mixtures
合作研究:高维混合物中的统计最优传输
- 批准号:
2210563 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Statistical Foundations of Model-Based Variable Clustering
基于模型的变量聚类的统计基础
- 批准号:
1712709 - 财政年份:2017
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Matrix estimation under rank constraints for complete and incomplete noisy data
完整和不完整噪声数据的秩约束下的矩阵估计
- 批准号:
1212325 - 财政年份:2011
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Matrix estimation under rank constraints for complete and incomplete noisy data
完整和不完整噪声数据的秩约束下的矩阵估计
- 批准号:
1007444 - 财政年份:2010
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
From Probability to Statistics and Back: High Dimensional Models and Processes Conference; Seattle, WA; Summer 2010
从概率到统计再返回:高维模型和过程会议;
- 批准号:
0925275 - 财政年份:2009
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似国自然基金
基于 Hidden-Markov 理论的孤岛微电网负荷
频率鲁棒控制研究
- 批准号:Q24F030019
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Zero_HiddenHunger_EU - Tackling micronutrient malnutrition and hidden hunger to improve health in the EU
Zero_HiddenHunger_EU - 解决微量营养素营养不良和隐性饥饿问题,以改善欧盟的健康
- 批准号:
10108303 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
EU-Funded
Tackling micronutrient malnutrition and hidden hunger to improve health in the EU
解决微量营养素营养不良和隐性饥饿问题,以改善欧盟的健康状况
- 批准号:
10109719 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
EU-Funded
A Hidden Migration History: South Asian Medical Professionals in Scotland 1872-2022
隐藏的移民历史:1872-2022 年苏格兰的南亚医疗专业人员
- 批准号:
2902837 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Studentship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
South Africa's Hidden War: Histories of Sexual and Gender-based Violence from Apartheid to the Present
南非的隐秘战争:从种族隔离至今的性暴力和性别暴力历史
- 批准号:
MR/Y020189/1 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Fellowship
REVEALing Signatures of Habitable Worlds Hidden by Stellar Activity
揭示恒星活动隐藏的宜居世界的特征
- 批准号:
EP/Z000181/1 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Research Grant
Hidden Frontiers: longitudinal crop trajectories in the Alpine Arc
隐藏的前沿:阿尔卑斯弧线的纵向作物轨迹
- 批准号:
NE/Y000293/1 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Research Grant
CAREER: Irregular Modulation: Harnessing the Hidden Potential of PWM
职业:不规则调制:利用 PWM 的隐藏潜力
- 批准号:
2339806 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Hidden in Plain Sight: Historical and Scientific Analysis of Premodern Sacred Books
隐藏在众目睽睽之下:前现代圣书的历史和科学分析
- 批准号:
AH/X011224/1 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Research Grant
Hidden lives: domestic servants in the European country house, c.1700-1850
隐秘的生活:欧洲乡村别墅中的家庭佣人,约 1700-1850 年
- 批准号:
AH/X012794/1 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Research Grant