Matrix estimation under rank constraints for complete and incomplete noisy data
完整和不完整噪声数据的秩约束下的矩阵估计
基本信息
- 批准号:1212325
- 负责人:
- 金额:$ 22.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-06-30 至 2014-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The central goals of this proposal are:(a) to provide methods for the estimation of matrices of unknown rank from both completely and incompletely observed noisy matrices, using rank regularized risk minimization and (b) to establish novel oracle type risk bounds for the matrix estimates and the rank estimates, under minimal assumptions. The difficulty of the problem of recovering the underlying target matrix from an observed noisy matrix is that the number of independent parameters is large relative to the number of observations. Special attention is given to multivariate response regression models. There is an interesting resemblance between matrix estimation under low rank assumptions and estimation in general regression models under sparsity assumptions, but matrix models pose different mathematical and computational challenges.High dimensional data arranged in matrix format are increasingly common in many scientific disciplines such as genetics, medical imaging, engineering, psychology and neuroscience. The matrices containing observed data in these areas tend to have high rank due to the presence of noise, but the signal matrix underlying the data may have significantly lower rank. Ignoring this in any inferential procedure may lead to poor recovery of the target, with severe repercussions on the interpretation of the results. Instances of targets that must be recovered with the highest possible precision include: faces against background, ensembles of genes that are associated with a disease, brain structures associated with cognitive processes, to name just a few example. Some of the challenges associated with the analysis of such data can be met via the methodological and theoretical study of the problem of matrix estimation under rank constraints. A second problem, which is substantially more difficult, is to perform the same task when only partially observed noisy matrices are available. Systematic investigation of these two problems is the focus of this proposal. The usefulness of these techniques will be immediately disseminated to the scientific community by applying them to data obtained from a study of the effects of HIV on brain structure and functions. Free software that implements the developed methodology will be made available on the web in a readily implementable form.
本提案的中心目标是:(a)提供从完全观察和不完全观察的噪声矩阵中估计未知秩矩阵的方法,使用秩正则化风险最小化;(b)在最小假设下为矩阵估计和秩估计建立新的oracle类型风险界限。从观测到的噪声矩阵中恢复潜在目标矩阵问题的难点在于相对于观测值而言,独立参数的数量很大。特别注意多变量响应回归模型。在低秩假设下的矩阵估计与在稀疏性假设下的一般回归模型的估计之间存在有趣的相似之处,但矩阵模型提出了不同的数学和计算挑战。以矩阵形式排列的高维数据在遗传学、医学影像学、工程学、心理学和神经科学等许多科学学科中越来越普遍。由于噪声的存在,包含这些区域观测数据的矩阵往往具有高秩,但数据底层的信号矩阵可能具有明显较低的秩。在任何推理程序中忽略这一点可能导致目标恢复不良,对结果的解释产生严重影响。必须尽可能精确地恢复目标的实例包括:背景下的面孔,与疾病相关的基因集合,与认知过程相关的大脑结构,仅举几例。与这些数据分析相关的一些挑战可以通过秩约束下矩阵估计问题的方法和理论研究来解决。第二个困难得多的问题是,在只有部分观察到的噪声矩阵可用的情况下执行相同的任务。对这两个问题的系统研究是本文的重点。通过将这些技术应用于从艾滋病毒对大脑结构和功能的影响的研究中获得的数据,这些技术的有用性将立即传播给科学界。实现所开发方法的自由软件将以易于实现的形式在网络上提供。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Florentina Bunea其他文献
Florentina Bunea的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Florentina Bunea', 18)}}的其他基金
Collaborative Research: Statistical Optimal Transport in High Dimensional Mixtures
合作研究:高维混合物中的统计最优传输
- 批准号:
2210563 - 财政年份:2022
- 资助金额:
$ 22.03万 - 项目类别:
Standard Grant
Learning from Hidden Signatures in High-Dimensional Models
从高维模型中的隐藏签名中学习
- 批准号:
2015195 - 财政年份:2020
- 资助金额:
$ 22.03万 - 项目类别:
Standard Grant
Statistical Foundations of Model-Based Variable Clustering
基于模型的变量聚类的统计基础
- 批准号:
1712709 - 财政年份:2017
- 资助金额:
$ 22.03万 - 项目类别:
Continuing Grant
Matrix estimation under rank constraints for complete and incomplete noisy data
完整和不完整噪声数据的秩约束下的矩阵估计
- 批准号:
1007444 - 财政年份:2010
- 资助金额:
$ 22.03万 - 项目类别:
Continuing Grant
From Probability to Statistics and Back: High Dimensional Models and Processes Conference; Seattle, WA; Summer 2010
从概率到统计再返回:高维模型和过程会议;
- 批准号:
0925275 - 财政年份:2009
- 资助金额:
$ 22.03万 - 项目类别:
Standard Grant
相似国自然基金
肌肉挫伤后组织中时间相关基因表达与损伤经历时间研究
- 批准号:81001347
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于计算和存储感知的运动估计算法与结构研究
- 批准号:60803013
- 批准年份:2008
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
多用户MIMO-OFDM系统中的同步和信道估计的研究
- 批准号:60302025
- 批准年份:2003
- 资助金额:30.0 万元
- 项目类别:联合基金项目
相似海外基金
AMPS: Scalable Methods for Real-time Estimation of Power Systems under Uncertainty
AMPS:不确定性下电力系统实时估计的可扩展方法
- 批准号:
2229495 - 财政年份:2023
- 资助金额:
$ 22.03万 - 项目类别:
Standard Grant
Non-parametric estimation under covariate shift: From fundamental bounds to efficient algorithms
协变量平移下的非参数估计:从基本界限到高效算法
- 批准号:
2311072 - 财政年份:2023
- 资助金额:
$ 22.03万 - 项目类别:
Standard Grant
CAREER: New Foundations for Multi-Fidelity Prediction, Estimation, and Learning Under Uncertainty in Dynamical Systems
职业生涯:动态系统不确定性下多保真度预测、估计和学习的新基础
- 批准号:
2238913 - 财政年份:2023
- 资助金额:
$ 22.03万 - 项目类别:
Standard Grant
Research and development on channel estimation method and performance improvement under ultra-multi-connection wireless environment
超多连接无线环境下信道估计方法及性能提升研究进展
- 批准号:
22K04085 - 财政年份:2022
- 资助金额:
$ 22.03万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Incidence regression, variable selection and conditional density estimation from prevalent cohort survival data under stochastic constraints
随机约束下流行队列生存数据的发生率回归、变量选择和条件密度估计
- 批准号:
RGPIN-2018-05618 - 财政年份:2022
- 资助金额:
$ 22.03万 - 项目类别:
Discovery Grants Program - Individual
Development of radiation source and shielding material shape distribution estimation technology under complicated radiation field
复杂辐射场下辐射源及屏蔽材料形状分布估计技术开发
- 批准号:
22K04119 - 财政年份:2022
- 资助金额:
$ 22.03万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Statistical Estimation under Nonlinear Algebraic Constraints
非线性代数约束下的统计估计
- 批准号:
RGPIN-2020-04607 - 财政年份:2022
- 资助金额:
$ 22.03万 - 项目类别:
Discovery Grants Program - Individual
Variance estimation under multiple imputation for missing survey data
缺失调查数据多重插补下的方差估计
- 批准号:
574963-2022 - 财政年份:2022
- 资助金额:
$ 22.03万 - 项目类别:
University Undergraduate Student Research Awards
Incidence regression, variable selection and conditional density estimation from prevalent cohort survival data under stochastic constraints
随机约束下流行队列生存数据的发生率回归、变量选择和条件密度估计
- 批准号:
RGPIN-2018-05618 - 财政年份:2021
- 资助金额:
$ 22.03万 - 项目类别:
Discovery Grants Program - Individual
Topics in Threshold Models: Efficient Procedures under Endogeneity in Regression Discontinuity Designs and Distributed and Robust Estimation of Change-Points
阈值模型主题:回归间断设计中内生性下的有效程序以及变化点的分布式鲁棒估计
- 批准号:
2113364 - 财政年份:2021
- 资助金额:
$ 22.03万 - 项目类别:
Standard Grant














{{item.name}}会员




