Statistical Foundations of Model-Based Variable Clustering
基于模型的变量聚类的统计基础
基本信息
- 批准号:1712709
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2020-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The problem of variable clustering is a corner stone in a multitude of areas such as genetics, neuroscience, sociology, macroeconomics, to name a few. In neuroscience, it aids in finding new functionally connected areas. In genetics, it helps advance the discovery of genes with under-explored or unknown functions. In macro-economics it can assist with the creation of new economic indices. Despite its wide-spread importance and potential impact, this problem has not received a systematic methodological and theoretical treatment in the literature. Although clustering algorithms abound, and have a very long history, assessing the validity of their input is somewhat arbitrary. A probabilistic, model-based approach is put forward in this project. This will enable the development of a unified framework for principled statistical variable clustering.Specifically, this project will introduce and investigate classes of latent variable models for overlapping and non-overlapping variable clustering. The focal points are: (I) The introduction of identifiable latent variable models for clustering. This will provide well defined targets for estimation, and will facilitate the scientific interpretation of the clusters. (II) The development of polynomial time algorithms tailored to these models. (III) The creation of a unifying framework for the theoretical analysis of clustering algorithms, with emphasis on minimax optimality and high dimensional inference. (IV) The study of the impact of model based clustering algorithms on downstream analyses, with emphasis on graphical models, regression and classification.
变量聚类问题是遗传学、神经科学、社会学、宏观经济学等众多领域的基石。在神经科学中,它有助于寻找新的功能相连的区域。在遗传学上,它有助于发现功能未被充分发掘或未知的基因。在宏观经济方面,它可以帮助创建新的经济指数。尽管这个问题具有广泛的重要性和潜在的影响,但在文献中还没有得到系统的方法论和理论处理。虽然集群算法很多,而且有很长的历史,但评估它们输入的有效性有点武断。在这个项目中,提出了一种基于模型的概率方法。这将使一个统一的原则性统计变量聚类框架的发展成为可能。具体地说,该项目将引入和研究用于重叠和非重叠变量聚类的潜在变量模型。重点是:(I)引入可识别的潜在变量模型进行聚类。这将为估计提供明确的目标,并将促进对集群的科学解释。(2)开发为这些模型量身定做的多项式时间算法。(3)为集群算法的理论分析建立一个统一的框架,重点是极小极大最优性和高维推理。(4)研究基于模型的聚类算法对下游分析的影响,重点是图形模型、回归和分类。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Latent Model-Based Clustering for Biological Discovery
用于生物发现的基于潜在模型的聚类
- DOI:10.1016/j.isci.2019.03.018
- 发表时间:2019
- 期刊:
- 影响因子:5.8
- 作者:Bing, X;Bunea, F;Royer, M;Das, J.
- 通讯作者:Das, J.
Adaptive estimation of the rank of the coefficient matrix in high-dimensional multivariate response regression models
- DOI:10.1214/18-aos1774
- 发表时间:2017-04
- 期刊:
- 影响因子:0
- 作者:Xin Bing;M. Wegkamp
- 通讯作者:Xin Bing;M. Wegkamp
Weak convergence of stationary empirical processes
平稳经验过程的弱收敛
- DOI:10.1016/j.jspi.2017.09.006
- 发表时间:2018
- 期刊:
- 影响因子:0.9
- 作者:Radulović, Dragan;Wegkamp, Marten
- 通讯作者:Wegkamp, Marten
Weak convergence of empirical copula processes indexed by functions
按函数索引的经验关联过程的弱收敛性
- DOI:10.3150/16-bej849
- 发表时间:2017
- 期刊:
- 影响因子:1.5
- 作者:Radulović, Dragan;Wegkamp, Marten;Zhao, Yue
- 通讯作者:Zhao, Yue
ADAPTIVE ESTIMATION IN STRUCTURED FACTOR MODELS WITH APPLICATIONS TO OVERLAPPING CLUSTERING
- DOI:10.1214/19-aos1877
- 发表时间:2020-08-01
- 期刊:
- 影响因子:4.5
- 作者:Bing, Xin;Bunea, Florentina;Wegkamp, Marten
- 通讯作者:Wegkamp, Marten
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Florentina Bunea其他文献
Florentina Bunea的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Florentina Bunea', 18)}}的其他基金
Collaborative Research: Statistical Optimal Transport in High Dimensional Mixtures
合作研究:高维混合物中的统计最优传输
- 批准号:
2210563 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Learning from Hidden Signatures in High-Dimensional Models
从高维模型中的隐藏签名中学习
- 批准号:
2015195 - 财政年份:2020
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Matrix estimation under rank constraints for complete and incomplete noisy data
完整和不完整噪声数据的秩约束下的矩阵估计
- 批准号:
1212325 - 财政年份:2011
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Matrix estimation under rank constraints for complete and incomplete noisy data
完整和不完整噪声数据的秩约束下的矩阵估计
- 批准号:
1007444 - 财政年份:2010
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
From Probability to Statistics and Back: High Dimensional Models and Processes Conference; Seattle, WA; Summer 2010
从概率到统计再返回:高维模型和过程会议;
- 批准号:
0925275 - 财政年份:2009
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
相似海外基金
Foundations of the Finite Model Theory of Concatenation
级联有限模型理论的基础
- 批准号:
EP/T033762/1 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Research Grant
Development of a Practical Soil Constitutive Model Suitable for the Design of Offshore Wind Turbine Foundations in Sand Considering Cyclic Loading
开发适用于考虑循环荷载的沙地海上风力发电机基础设计的实用土壤本构模型
- 批准号:
2506453 - 财政年份:2020
- 资助金额:
$ 25万 - 项目类别:
Studentship
Development of a Practical Soil Constitutive Model Suita-ble for the Design of Offshore Wind Turbine Foundations in Sand, Considering Cyclic Loading -
开发适用于沙中海上风力涡轮机基础设计的实用土壤本构模型,考虑循环载荷 -
- 批准号:
2513197 - 财政年份:2020
- 资助金额:
$ 25万 - 项目类别:
Studentship
Development of a Practical Soil Constitutive Model Suitable for the Design of Offshore Wind Turbine Foundations in Sand Considering Cyclic Loading
开发适用于考虑循环荷载的沙地海上风力发电机基础设计的实用土壤本构模型
- 批准号:
2440655 - 财政年份:2020
- 资助金额:
$ 25万 - 项目类别:
Studentship
Foundations of Efficient Model Checking for Counting Logics on Structurally Sparse Graph Classes
结构稀疏图类计数逻辑的高效模型检查基础
- 批准号:
426003173 - 财政年份:2019
- 资助金额:
$ 25万 - 项目类别:
Research Grants
Choice foundations: Diagnostic tools for individual-level model development
选择基础:用于个人级模型开发的诊断工具
- 批准号:
DP180101070 - 财政年份:2018
- 资助金额:
$ 25万 - 项目类别:
Discovery Projects
CAREER: Model-Independent Foundations for Higher Infinity-Categories
职业:更高无穷类别的独立于模型的基础
- 批准号:
1652600 - 财政年份:2017
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
EAGER: Model-based Foundations of Collective Systems Design Theory
EAGER:基于模型的集体系统设计理论基础
- 批准号:
1742971 - 财政年份:2017
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Foundations of Model Driven Discovery from Massive Data
海量数据中模型驱动发现的基础
- 批准号:
1740741 - 财政年份:2017
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Targeted Infusion Project: Engaging Students for Higher Retention and Building Stronger Foundations in Pre-Calculus Using the Flipped Model
有针对性的注入项目:利用翻转模型提高学生的记忆力并在初级微积分中打下更坚实的基础
- 批准号:
1623345 - 财政年份:2016
- 资助金额:
$ 25万 - 项目类别:
Standard Grant