Optimal Nonparametric Methods for Ito Processes Based on High-Frequency Data
基于高频数据的 Ito 过程的最优非参数方法
基本信息
- 批准号:2015323
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project will develop new statistical methods to analyze stochastic phenomena that inherently evolves in time. The methods will be based on high-frequency monitoring of the phenomena under study, which is of widening use in many fields such as finance, meteorology, biology, neuroscience, turbulence, statistical physics, seismology, and telecommunication. Thus, the research will foster more interaction between applied scientists and statisticians. The research and educational elements of the project will also serve as a training tool for both undergraduate and graduate students by forming synergistic research groups involving all levels. Nonparametric methods are powerful statistical tools to reduce the model misspecification error, and high-frequency-based statistical analysis is a natural route to take when estimating the fine statistical features of continuous-time stochastic processes. Though the literature combining these two approaches has grown significantly during the last two decades, comparatively little work has been done to analyze and correct the sensitivity of methods to tuning parameters. The project will address these needs by (i) developing a unified approach for optimal kernel estimation of the spot volatility of an Ito process in the presence of leverage and microstructure noise; (ii) devising of optimal jump detection and integrated variance estimation methods, under the presence of stochastic volatility and infinite jump activity, via thresholding or shrinkage of the process' increments or wavelet coefficients; (iii) establishing theoretical guarantees for the data-driven plugging implementation methods resulting from the optimal schemes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将开发新的统计方法来分析随时间内在演变的随机现象。这些方法将以所研究现象的高频监测为基础,在金融、气象学、生物学、神经科学、湍流、统计物理学、地震学和电信等许多领域都有广泛的用途。因此,这项研究将促进应用科学家和统计学家之间更多的互动。该项目的研究和教育部分还将通过组成涉及各级的协同研究小组,作为本科生和研究生的培训工具。非参数方法是减少模型误设误差的强大统计工具,而基于高频的统计分析是估计连续时间随机过程的精细统计特征时的自然途径。虽然这两种方法相结合的文献在过去的二十年中显着增长,相对较少的工作已经做了分析和校正的方法调整参数的灵敏度。该项目将通过以下方式满足这些需求:(i)在存在杠杆和微观结构噪声的情况下,开发Ito过程的现货波动率的最佳核估计的统一方法;(ii)在存在随机波动率和无限跳跃活动的情况下,通过对过程的增量或小波系数进行阈值化或收缩,设计最佳跳跃检测和综合方差估计方法;(iii)为最佳方案产生的数据驱动封堵实施方法建立理论保证。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Optimal kernel estimation of spot volatility of stochastic differential equations
随机微分方程现货波动率的最优核估计
- DOI:10.1016/j.spa.2020.01.013
- 发表时间:2020
- 期刊:
- 影响因子:1.4
- 作者:Figueroa-López, José E.;Li, Cheng
- 通讯作者:Li, Cheng
Estimation of Tempered Stable Lévy Models of Infinite Variation
无限变分的调和稳定 Lévy 模型的估计
- DOI:10.1007/s11009-022-09940-7
- 发表时间:2022
- 期刊:
- 影响因子:0.9
- 作者:Figueroa-López, José E.;Gong, Ruoting;Han, Yuchen
- 通讯作者:Han, Yuchen
Bayesian inference on volatility in the presence of infinite jump activity and microstructure noise
- DOI:10.1214/20-ejs1794
- 发表时间:2019-09
- 期刊:
- 影响因子:0
- 作者:Qi Wang;J. E. Figueroa-L'opez;Todd A. Kuffner
- 通讯作者:Qi Wang;J. E. Figueroa-L'opez;Todd A. Kuffner
Optimal iterative threshold-kernel estimation of jump diffusion processes
- DOI:10.1007/s11203-020-09211-7
- 发表时间:2020-03
- 期刊:
- 影响因子:0.8
- 作者:José E. Figueroa-López;Cheng Li;Jeffrey A. Nisen
- 通讯作者:José E. Figueroa-López;Cheng Li;Jeffrey A. Nisen
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jose Figueroa-Lopez其他文献
Jose Figueroa-Lopez的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jose Figueroa-Lopez', 18)}}的其他基金
A New Approach Toward Optimal and Adaptive Nonparametric Methods for High-Frequency Data
针对高频数据的最优自适应非参数方法的新方法
- 批准号:
1613016 - 财政年份:2016
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
CAREER: Bridging High-Frequency Data Analysis and Continuous-time Features of Levy Models
职业:桥接高频数据分析和 Levy 模型的连续时间特征
- 批准号:
1561141 - 财政年份:2015
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
CAREER: Bridging High-Frequency Data Analysis and Continuous-time Features of Levy Models
职业:桥接高频数据分析和 Levy 模型的连续时间特征
- 批准号:
1149692 - 财政年份:2012
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Nonparametric Methods for Jump Processes Under Microstructure Noise
微观结构噪声下跳跃过程的非参数方法
- 批准号:
0906919 - 财政年份:2009
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
相似海外基金
New Development of Nonparametric and Semiparametric Estimation Methods in Economics, Finance and Insurance
经济、金融和保险领域非参数和半参数估计方法的新进展
- 批准号:
23K01340 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Empirical likelihood and other nonparametric and semiparametric statistical methods for complex surveys, reliability engineering, and environmental studies
用于复杂调查、可靠性工程和环境研究的经验可能性和其他非参数和半参数统计方法
- 批准号:
RGPIN-2017-06267 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Discovery Grants Program - Individual
Statistical infernce for survival data: nonparametric methods and deep learning
生存数据的统计推断:非参数方法和深度学习
- 批准号:
RGPIN-2019-05574 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Discovery Grants Program - Individual
Nonparametric statistical methods based on graph theory
基于图论的非参数统计方法
- 批准号:
RGPIN-2022-03264 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Discovery Grants Program - Individual
Random forests, nonparametric and screening methods
随机森林、非参数和筛选方法
- 批准号:
RGPIN-2016-05702 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Discovery Grants Program - Individual
Robust and nonparametric methods for complex data objects
适用于复杂数据对象的稳健非参数方法
- 批准号:
RGPIN-2019-04610 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Discovery Grants Program - Individual
A suite of new nonparametric methods for missing data and data from heterogeneous sources based on the theory of Frechet classes
基于 Frechet 类理论的一套新的用于缺失数据和异构源数据的非参数方法
- 批准号:
EP/W016117/1 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Research Grant
Nonparametric Statistical Inference for Time Series Trend Analysis, and Statistical Modelling Methods with Applications in Health Research and Environmental Science
时间序列趋势分析的非参数统计推断以及在健康研究和环境科学中应用的统计建模方法
- 批准号:
RGPIN-2018-05578 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Discovery Grants Program - Individual
Empirical likelihood and other nonparametric and semiparametric statistical methods for complex surveys, reliability engineering, and environmental studies
用于复杂调查、可靠性工程和环境研究的经验可能性和其他非参数和半参数统计方法
- 批准号:
RGPIN-2017-06267 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Discovery Grants Program - Individual
Robust and nonparametric methods for complex data objects
适用于复杂数据对象的稳健非参数方法
- 批准号:
RGPIN-2019-04610 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Discovery Grants Program - Individual