A New Approach Toward Optimal and Adaptive Nonparametric Methods for High-Frequency Data

针对高频数据的最优自适应非参数方法的新方法

基本信息

  • 批准号:
    1613016
  • 负责人:
  • 金额:
    $ 9.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2019-08-31
  • 项目状态:
    已结题

项目摘要

High frequency monitoring of complex systems, which operate in continuous time, is increasingly important in many fields such as neural science, turbulence, and environmental sciences. This tendency, however, has been particularly predominant in financial markets with the advent of transaction and Limit Order Book data sets, which constitute two prototypical examples of "big data" in statistics. In light of the just mentioned technological advances, statistical inference methods for continuous time processes based on high-frequency observations have seen a rapid evolution in the last few years. One of the crucial issues with the current state of art of the subject lies in the fact that most of the proposed methods critically depend on tuning parameters that need to be calibrated. This, of course, is the case with most of the nonparametric methods used in other classical statistical problems. However, the extensive literature for resolving these problems in other frameworks has not yet been fully translated into the context of high-frequency-based inference for stochastic processes. Another important issue comes from the common practice of adopting artificial models specified by stochastic dynamical systems, which are known to lack sufficient accuracy for describing the stylized features of asset prices at ultra high frequency. This, in turn, has motivated the introduction of the concept of microstructure noise, but sometimes, again, assuming unnatural assumptions. Hence, there is a real need for bottom-up derivations of models that allow a better understanding of the underlying asset price formation.The principal investigator will tap on the previously mentioned needs and is expected to significantly advance the area in the following three primary directions of theoretical and practical relevance: (1) Devise new methodologies towards the implementation of "optimal" inference methods in regard to the intrinsic tuning parameters of the methods; (2) Develop a new approach, together with the necessary theoretical foundations, for adaptive estimation methods based on data-driven fixed point procedures; (3) Better incorporation of Limit Order Book data in the modeling of both the underlying approximating jump-diffusion process and the microstructure noise with a view of enhancing the estimation of latent process parameters based on limit order book information.
对连续运行的复杂系统的高频监测在神经科学、湍流和环境科学等许多领域越来越重要。然而,随着交易和限价盘簿数据集的出现,这一趋势在金融市场中尤其突出,这两个数据集构成了统计学中“大数据”的两个典型例子。鉴于刚刚提到的技术进步,基于高频观测的连续时间过程的统计推断方法在过去几年中得到了快速发展。该主题的当前技术状态的关键问题之一在于,大多数所提出的方法严重依赖于需要校准的调谐参数。当然,这是其他经典统计问题中使用的大多数非参数方法的情况。然而,在其他框架中解决这些问题的大量文献尚未完全转化为随机过程的基于高频的推理。另一个重要的问题来自采用随机动态系统指定的人工模型的常见做法,已知这些模型缺乏足够的准确性来描述超高频资产价格的程式化特征。这反过来又激发了微结构噪声概念的引入,但有时,再次假设不自然的假设。因此,真实的需要自下而上的模型推导,以便更好地理解基础资产价格形成。首席研究员将利用上述需求,并有望在以下三个理论和实践相关的主要方向上显著推进该领域:(1)设计新的方法,以实现关于方法的内在调整参数的“最佳”推理方法;(2)为基于数据驱动的定点程序的自适应估计方法制定一种新的办法,并提供必要的理论基础;(3)在模拟潜在的近似跳跃时更好地结合限价订单簿数据,扩散过程和微观结构噪声的影响,以增强基于限价订单信息的潜在过程参数估计。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jose Figueroa-Lopez其他文献

Jose Figueroa-Lopez的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jose Figueroa-Lopez', 18)}}的其他基金

Optimal Nonparametric Methods for Ito Processes Based on High-Frequency Data
基于高频数据的 Ito 过程的最优非参数方法
  • 批准号:
    2015323
  • 财政年份:
    2020
  • 资助金额:
    $ 9.99万
  • 项目类别:
    Standard Grant
CAREER: Bridging High-Frequency Data Analysis and Continuous-time Features of Levy Models
职业:桥接高频数据分析和 Levy 模型的连续时间特征
  • 批准号:
    1561141
  • 财政年份:
    2015
  • 资助金额:
    $ 9.99万
  • 项目类别:
    Continuing Grant
CAREER: Bridging High-Frequency Data Analysis and Continuous-time Features of Levy Models
职业:桥接高频数据分析和 Levy 模型的连续时间特征
  • 批准号:
    1149692
  • 财政年份:
    2012
  • 资助金额:
    $ 9.99万
  • 项目类别:
    Continuing Grant
Nonparametric Methods for Jump Processes Under Microstructure Noise
微观结构噪声下跳跃过程的非参数方法
  • 批准号:
    0906919
  • 财政年份:
    2009
  • 资助金额:
    $ 9.99万
  • 项目类别:
    Standard Grant

相似国自然基金

EnSite array指导下对Stepwise approach无效的慢性房颤机制及消融径线设计的实验研究
  • 批准号:
    81070152
  • 批准年份:
    2010
  • 资助金额:
    10.0 万元
  • 项目类别:
    面上项目

相似海外基金

A Big Data Approach Toward the Development of New Quantitative Autism Severity Scores from Existing Instruments
利用现有仪器开发新的定量自闭症严重程度评分的大数据方法
  • 批准号:
    10438954
  • 财政年份:
    2022
  • 资助金额:
    $ 9.99万
  • 项目类别:
Non-anthropocentric approach to resilience: Toward a new theoretical framework
非人类中心的复原力方法:迈向新的理论框架
  • 批准号:
    22K13551
  • 财政年份:
    2022
  • 资助金额:
    $ 9.99万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Verification of Bladder Cancer Arterial Therapy under Balloon Occlusion and Development of a New Therapeutic Approach: Toward the Establishment of a Medical-Veterinary Cooperative Model
球囊阻断下膀胱癌动脉治疗的验证和新治疗方法的开发:建立医疗兽医合作模式
  • 批准号:
    20K08092
  • 财政年份:
    2020
  • 资助金额:
    $ 9.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The Voices of British Child Migrants: A New Approach Toward Analysing the 19th- and 20th-Century Child Migration Schemes
英国儿童移民的声音:分析 19 世纪和 20 世纪儿童移民计划的新方法
  • 批准号:
    419982286
  • 财政年份:
    2019
  • 资助金额:
    $ 9.99万
  • 项目类别:
    Research Grants
A Big Data Approach Toward the Development of a New Quantitative Measure of Restricted and Repetitive Behaviors
利用大数据方法开发限制性和重复性行为的新量化指标
  • 批准号:
    10066368
  • 财政年份:
    2019
  • 资助金额:
    $ 9.99万
  • 项目类别:
Approach toward age-related diseases with the use of a new senolytic drugs
使用新型抗衰老药物治疗与年龄相关的疾病
  • 批准号:
    18K15065
  • 财政年份:
    2018
  • 资助金额:
    $ 9.99万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Toward a New Approach for Human-Robot Interaction
迈向人机交互的新方法
  • 批准号:
    419406-2012
  • 财政年份:
    2018
  • 资助金额:
    $ 9.99万
  • 项目类别:
    Discovery Grants Program - Individual
Toward a New Approach for Human-Robot Interaction
迈向人机交互的新方法
  • 批准号:
    419406-2012
  • 财政年份:
    2017
  • 资助金额:
    $ 9.99万
  • 项目类别:
    Discovery Grants Program - Individual
Molecular basis of sperm quality control: challenging approach toward a new therapeutic strategy for male infertility
精子质量控制的分子基础:男性不育新治疗策略的挑战性方法
  • 批准号:
    16K15715
  • 财政年份:
    2016
  • 资助金额:
    $ 9.99万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
New approach to the complex watershed governance: A study of the major policy change toward the watershed ecosystem restoration
复杂流域治理新路径:流域生态系统修复重大政策变化研究
  • 批准号:
    16K16236
  • 财政年份:
    2016
  • 资助金额:
    $ 9.99万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了