Statistical Properties of Privacy-Preserving Algorithms: Optimality, Adaptivity, and Stability

隐私保护算法的统计特性:最优性、适应性和稳定性

基本信息

  • 批准号:
    2015378
  • 负责人:
  • 金额:
    $ 10万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-01 至 2023-06-30
  • 项目状态:
    已结题

项目摘要

The increasing popularity of large-scale data analysis raises privacy concerns. The tremendous amount of data collected by data curators such as search engines, social network platforms, and medical institutions contain potentially sensitive information about individuals. With the rapid emergence of data-driven technologies, it has been increasingly important to respect the privacy of individuals. A central question is: how to build privacy-preserving algorithms to protect individual privacy without sacrificing the utility in a large degree? This project aims to develop rigorous tools and methodologies to analyze privacy-preserving algorithms. The research objective of this project is to develop statistical theories and applications of privacy-preserving algorithms. In particular, the technical goals include (1) the statistical optimality of privacy-preserving algorithms in parametric models; (2) the statistical optimality and adaptivity of privacy-preserving algorithms in nonparametric regression, with focus on random forests algorithms, and; (3) the stability of privacy-preserving algorithms with applications to post-selection inference and adversarial robustness of deep neural networks. The new theoretical understandings will not only shed light on current privacy-preserving methodologies but also lead to new methodological developments of stable and adversarially robust algorithms.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
大规模数据分析的日益普及引发了对隐私的担忧。搜索引擎、社交网络平台和医疗机构等数据管理员收集的大量数据包含有关个人的潜在敏感信息。随着数据驱动技术的迅速出现,尊重个人隐私变得越来越重要。一个核心问题是:如何构建隐私保护算法来保护个人隐私,同时又不会在很大程度上牺牲效用?该项目旨在开发严格的工具和方法来分析隐私保护算法。本课题的研究目标是发展隐私保护算法的统计理论和应用。具体而言,技术目标包括:(1)参数模型中隐私保护算法的统计最优性;(2)非参数回归中隐私保护算法的统计最优性和自适应性,重点研究了随机森林算法;(3)隐私保护算法的稳定性及其在后选择推理中的应用和深度神经网络的对抗鲁棒性。新的理论理解不仅将阐明当前的隐私保护方法,而且还将导致稳定和对抗鲁棒算法的新方法发展。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(24)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
When and How Mixup Improves Calibration
  • DOI:
  • 发表时间:
    2021-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Linjun Zhang;Zhun Deng;Kenji Kawaguchi;James Y. Zou
  • 通讯作者:
    Linjun Zhang;Zhun Deng;Kenji Kawaguchi;James Y. Zou
Estimation and Inference for High-Dimensional Generalized Linear Models with Knowledge Transfer
Discover and Cure: Concept-aware Mitigation of Spurious Correlation
  • DOI:
    10.48550/arxiv.2305.00650
  • 发表时间:
    2023-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shirley Wu;Mert Yuksekgonul;Linjun Zhang;James Y. Zou
  • 通讯作者:
    Shirley Wu;Mert Yuksekgonul;Linjun Zhang;James Y. Zou
Central Limit Theorem and Uncertainty Principles for Differentially Private Query Answering
差分隐私查询应答的中心极限定理和不确定性原理
How Does Mixup Help With Robustness and Generalization?
  • DOI:
  • 发表时间:
    2020-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Linjun Zhang;Zhun Deng;Kenji Kawaguchi;Amirata Ghorbani;James Y. Zou
  • 通讯作者:
    Linjun Zhang;Zhun Deng;Kenji Kawaguchi;Amirata Ghorbani;James Y. Zou
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Linjun Zhang其他文献

Perception of musical melody and rhythm as influenced by native language experience.
受母语经验影响的音乐旋律和节奏的感知。
MRCS: Matrix Recovery Based Communication-efficient Compressive Sampling in Large-scale Environmental IoT Networks of Dynamic-scale Temporal-Spatial Sparsity
MRCS:动态尺度时空稀疏的大规模环境物联网网络中基于矩阵恢复的通信高效压缩采样
F-FOMAML: GNN-Enhanced Meta-Learning for Peak Period Demand Forecasting with Proxy Data
F-FOMAML:使用代理数据进行高峰期需求预测的 GNN 增强元学习
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zexing Xu;Linjun Zhang;Sitan Yang;Rasoul Etesami;Hanghang Tong;Huan Zhang;Jiawei Han
  • 通讯作者:
    Jiawei Han
A fast-healing and high-performance metallosupramolecular elastomer based on pyridine-Cu coordination
一种基于吡啶-Cu配位的快速愈合高性能金属超分子弹性体
  • DOI:
    10.1007/s40843-021-1963-2
  • 发表时间:
    2022-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hui Liu;Qiaoqiao Shen;Linjun Zhang;Shiyu Gu;Yan Peng;Qi Wu;Hui Xiong;Hao Zhang;Lijuan Zhao;Guangsu Huang;Jinrong Wu
  • 通讯作者:
    Jinrong Wu
Effects of pedestrians’ visual search effectiveness and behavioral characteristics on the wayfinding performance at underground rail interchange stations: A field test study
行人视觉搜索有效性和行为特征对地铁换乘站寻路性能的影响:一项实地测试研究
  • DOI:
    10.1016/j.tust.2025.106617
  • 发表时间:
    2025-08-01
  • 期刊:
  • 影响因子:
    7.400
  • 作者:
    Jinshuan Peng;Chaoyu Ren;Liuting Lan;Xiongbo Cui;Linjun Zhang;Mengqing Wu
  • 通讯作者:
    Mengqing Wu

Linjun Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Linjun Zhang', 18)}}的其他基金

CAREER: New Frameworks for Ethical Statistical Learning: Algorithmic Fairness and Privacy
职业:道德统计学习的新框架:算法公平性和隐私
  • 批准号:
    2340241
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant

相似海外基金

A Novel Surrogate Framework for evaluating THM Properties of Bentonite
评估膨润土 THM 性能的新型替代框架
  • 批准号:
    DP240102053
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Discovery Projects
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Training Grant
Collaborative Research: Compositionally and Structurally Modulated Ferroelastic Films for Unprecedented Superelastic Properties
合作研究:成分和结构调制的铁弹性薄膜,具有前所未有的超弹性特性
  • 批准号:
    2333551
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
Polynomial Interpolation, Symmetric Ideals, and Lefschetz Properties
多项式插值、对称理想和 Lefschetz 属性
  • 批准号:
    2401482
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
Electronic, transport and topological properties of frustrated magnets
受挫磁体的电子、输运和拓扑特性
  • 批准号:
    2403804
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
RUI: Investigating the Covalency of Intermolecular Interactions and its Effect on the Properties of Supramolecular Complexes.
RUI:研究分子间相互作用的共价性及其对超分子复合物性质的影响。
  • 批准号:
    2404011
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
  • 批准号:
    2341238
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Characterization of the distribution and properties of inert copper in seawater
海水中惰性铜的分布和性质表征
  • 批准号:
    2343416
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
CRII: CPS: FAICYS: Model-Based Verification for AI-Enabled Cyber-Physical Systems Through Guided Falsification of Temporal Logic Properties
CRII:CPS:FAICYS:通过时态逻辑属性的引导伪造,对支持人工智能的网络物理系统进行基于模型的验证
  • 批准号:
    2347294
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Exploring the contribution of cell wall components and osmotic pressure to mechanical properties that enable root growth
探索细胞壁成分和渗透压对促进根系生长的机械性能的贡献
  • 批准号:
    24K17868
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了