Collaborative Research: Bayesian and Semi-Bayesian Methods for Detecting Relationships in High Dimensions

合作研究:用于检测高维关系的贝叶斯和半贝叶斯方法

基本信息

  • 批准号:
    2015528
  • 负责人:
  • 金额:
    $ 9.96万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-15 至 2024-05-31
  • 项目状态:
    已结题

项目摘要

In this big-data era, massive data sets are being generated routinely and we are seeing a growing need for powerful, reliable, and interpretable statistical learning tools to help understand these data. The main ideas and approaches in this projectl focus on developing effective statistical learning tools to learn about complex and heterogeneous structures, such as those changing in time or varying among different groups of individuals, in high-dimensions. The activities will have a significant impact on high dimensional Bayesian analysis and modeling of nonlinear relationships. While most current efforts for high-dimensional Bayesian analyses have been focused on linear models, this project focuses on two ways of generalizing standard linear models to meet certain practical challenges: one is a generalized form of mixture modeling, termed as individualized variable selection, which enables each individual observation to have its own set of dependent variables through the employment of neuronized priors. Another extension is the Bayesian inference of index models that form a mixture structure. The project will lead to useful tools (or customized software) for discovering interpretable nonlinear and interactive patterns among a large number of potential variables. Various aspects of statistical modeling, design, and learning strategies integrated in our algorithms are broadly applicable to problems involving signal discovery in complex systems and high-dimensional data. The project will also provide both educational and interdisciplinary research opportunities for graduate students, and will result in software useful to biomedical researchers, economists, social scientists, and many other practitioners. In a vast number of regression problems, especially under high-dimensional settings, the structure of the association between covariates in hand and the target quantity of interest might be heterogeneous over observations, which calls for effective methods to detect such non-trivial structures. Standard procedures, including traditional variable selections, commonly overlook the existence of interplays of these heterogeneous factors. This research project aims to develop statistical procedures that identify the complicated relationship between response Y and a set of covariates X in flexible and computationally efficient ways. Project 1 focuses on Bayesian individualized variable selection (BIVS), which generalizes standard linear regression models to quantify heterogeneous effects among individual observations that differ in their dependent variables with different magnitudes. The PIs will investigate its theoretical properties, including model selection consistency and its robustness when the model assumption is violated. Project 2 is devoted to the development of an efficient Bayesian method to infer the semi-parametric relationship between the response and covariates through general index models. The PIs will explore its computational feasibility and theoretical properties such as the posterior contraction rate on the estimation of the sufficient dimension reduction space. Project 3 focuses on a fast tuning parameter selection procedure by employing a generative process via neural networks. By using this procedure, the cross-validation can be efficiently implemented for general models, such as the BIVS and Bayesian index models, regularized variable selection, and nonparametric function estimation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在这个大数据时代,大量的数据集正在定期生成,我们看到越来越需要强大,可靠和可解释的统计学习工具来帮助理解这些数据。 该项目的主要思想和方法集中在开发有效的统计学习工具,以了解复杂和异构的结构,如那些随时间变化或在不同群体中变化的个体,在高维度。这些活动将对高维贝叶斯分析和非线性关系建模产生重大影响。虽然目前大多数高维贝叶斯分析的努力都集中在线性模型上,但该项目侧重于两种推广标准线性模型以应对某些实际挑战的方法:一种是混合建模的广义形式,称为个体化变量选择,它使每个个体观察通过使用神经元化先验来拥有自己的因变量集。另一个扩展是形成混合结构的指数模型的贝叶斯推断。该项目将导致有用的工具(或定制软件),用于发现大量潜在变量中可解释的非线性和交互模式。在我们的算法中集成的统计建模,设计和学习策略的各个方面广泛适用于复杂系统和高维数据中涉及信号发现的问题。 该项目还将为研究生提供教育和跨学科研究的机会,并将产生对生物医学研究人员,经济学家,社会科学家和许多其他从业者有用的软件。在大量的回归问题中,特别是在高维环境下,协变量与目标量之间的关联结构可能是异质的,这就需要有效的方法来检测这种非平凡的结构。标准程序,包括传统的变量选择,通常忽略了这些异质因素的相互作用的存在。该研究项目旨在开发统计程序,以灵活和计算效率高的方式识别响应Y与一组协变量X之间的复杂关系。 项目1的重点是贝叶斯个体化变量选择(BIVS),它概括了标准的线性回归模型,以量化个体观测之间的异质性效应,这些个体观测的因变量具有不同的幅度。PI将研究其理论特性,包括模型选择的一致性及其在违反模型假设时的稳健性。项目2致力于开发一种有效的贝叶斯方法,通过一般指数模型推断响应和协变量之间的半参数关系。PI将探讨其计算的可行性和理论性质,如后验收缩率估计的充分降维空间。项目3的重点是通过神经网络采用生成过程的快速调整参数选择过程。通过使用该程序,可以有效地对BIVS和贝叶斯指数模型、正则化变量选择和非参数函数估计等一般模型进行交叉验证。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Neural Bootstrapper
  • DOI:
  • 发表时间:
    2020-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Minsuk Shin;Hyungjoon Cho;Sungbin Lim
  • 通讯作者:
    Minsuk Shin;Hyungjoon Cho;Sungbin Lim
Bayesian Shrinkage for Functional Network Models, With Applications to Longitudinal Item Response Data
功能网络模型的贝叶斯收缩及其在纵向项目响应数据中的应用
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ray Bai其他文献

Uncovering Patterns for Adverse Pregnancy Outcomes with Spatial Analysis: Evidence from Philadelphia ∗
通过空间分析揭示不良妊娠结局的模式:来自费城的证据 —
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Cecilia Balocchi;Ray Bai;J. Liu;Silvia P. Canel'on;E. George;Yong Chen;M. Boland
  • 通讯作者:
    M. Boland
A Bayesian Hierarchical Modeling Framework for Geospatial Analysis of Adverse Pregnancy Outcomes
用于不良妊娠结果地理空间分析的贝叶斯分层建模框架
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Cecilia Balocchi;Ray Bai;J. Liu;Silvia P. Canel'on;E. George;Yong Chen;M. Boland
  • 通讯作者:
    M. Boland
Supplementary Materials for ‘ Large-Scale Multiple Hypothesis Testing with the Normal-Beta Prime Prior ’
“使用正态 Beta 素数先验进行大规模多重假设检验”的补充材料
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ray Bai;M. Ghosh
  • 通讯作者:
    M. Ghosh
On the Beta Prime Prior for Scale Parameters in High-Dimensional Bayesian Regression Models
高维贝叶斯回归模型中尺度参数的 Beta 素数先验
  • DOI:
    10.5705/ss.202019.0037
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Ray Bai;M. Ghosh
  • 通讯作者:
    M. Ghosh
Uncovering patterns for adverse pregnancy outcomes with a Bayesian spatial model: Evidence from Philadelphia
使用贝叶斯空间模型揭示不良妊娠结局的模式:来自费城的证据
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Cecilia Balocchi;Ray Bai;Jessica Liu;Silvia P. Canel'on;Edward I. George;Yong Chen;M. Boland
  • 通讯作者:
    M. Boland

Ray Bai的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
  • 批准号:
    2341238
  • 财政年份:
    2024
  • 资助金额:
    $ 9.96万
  • 项目类别:
    Standard Grant
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
  • 批准号:
    2341237
  • 财政年份:
    2024
  • 资助金额:
    $ 9.96万
  • 项目类别:
    Continuing Grant
Collaborative Research: Bayesian Residual Learning and Random Recursive Partitioning Methods for Gaussian Process Modeling
合作研究:高斯过程建模的贝叶斯残差学习和随机递归划分方法
  • 批准号:
    2348163
  • 财政年份:
    2023
  • 资助金额:
    $ 9.96万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Automating CI Configuration Troubleshooting with Bayesian Group Testing
协作研究:EAGER:使用贝叶斯组测试自动化 CI 配置故障排除
  • 批准号:
    2333326
  • 财政年份:
    2023
  • 资助金额:
    $ 9.96万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Automating CI Configuration Troubleshooting with Bayesian Group Testing
协作研究:EAGER:使用贝叶斯组测试自动化 CI 配置故障排除
  • 批准号:
    2333324
  • 财政年份:
    2023
  • 资助金额:
    $ 9.96万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Automating CI Configuration Troubleshooting with Bayesian Group Testing
协作研究:EAGER:使用贝叶斯组测试自动化 CI 配置故障排除
  • 批准号:
    2333325
  • 财政年份:
    2023
  • 资助金额:
    $ 9.96万
  • 项目类别:
    Standard Grant
Collaborative Research: Novel modeling and Bayesian analysis of high-dimensional time series
合作研究:高维时间序列的新颖建模和贝叶斯分析
  • 批准号:
    2210282
  • 财政年份:
    2022
  • 资助金额:
    $ 9.96万
  • 项目类别:
    Standard Grant
Collaborative Research: Randomization Based Machine Learning Methods in a Bayesian Model Setting for Data From a Complex Survey or Census
协作研究:针对复杂调查或人口普查数据的贝叶斯模型设置中基于随机化的机器学习方法
  • 批准号:
    2215169
  • 财政年份:
    2022
  • 资助金额:
    $ 9.96万
  • 项目类别:
    Standard Grant
Collaborative Research: Randomization Based Machine Learning Methods in a Bayesian Model Setting for Data From a Complex Survey or Census
协作研究:针对复杂调查或人口普查数据的贝叶斯模型设置中基于随机化的机器学习方法
  • 批准号:
    2215168
  • 财政年份:
    2022
  • 资助金额:
    $ 9.96万
  • 项目类别:
    Standard Grant
Collaborative Research: Advancing Bayesian Thinking in STEM
合作研究:推进 STEM 中的贝叶斯思维
  • 批准号:
    2215920
  • 财政年份:
    2022
  • 资助金额:
    $ 9.96万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了