Collaborative Research: High-Dimensional Decision Making and Inference with Applications for Personalized Medicine

合作研究:高维决策和推理及其在个性化医疗中的应用

基本信息

  • 批准号:
    2015539
  • 负责人:
  • 金额:
    $ 16万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-06-15 至 2022-07-31
  • 项目状态:
    已结题

项目摘要

With the advent of data collection and storage technology, researchers can obtain large-scale and high-dimensional datasets at a low price. Such datasets offer exciting opportunities to make better decisions and reveal new discoveries to improve decision making in various applications, and meanwhile, also raise statistical challenges. Over the past decades, regularization methods such as Lasso, SCAD, and MCP have been proposed to conduct model estimation in the presence of high dimensional covariates. Various numerical algorithms have been developed for these methods, and their theoretical properties are well studied. However, questions of how to efficiently and effectively utilize high-dimensional data to make optimal decisions and conduct inference are relatively less studied, although such problems are of vital practical importance. This project will develop new methods and theories for making optimal decisions and conducting valid inference under high-dimensional settings. The methods have wide applications, for instance, in personalized medicine where the goal is to determine the optimal treatments for a patient based on predictor information, including several thousand genetic markers. The principal investigators will develop and distribute user-friendly open-source software to practitioners and provide training opportunities to students at different levels. The project has three research aims. The first aim is to study the high-dimensional contextual bandit problem with binary actions, which is an online decision-making problem that finds applications in personalized healthcare and precision medicine. In this problem, the player sequentially chooses one action and observes a reward, where the goal is to maximize the reward. The principal investigators will develop a new algorithm to provide an optimal decision rule, which achieves the minimax optimal regret. The second aim is to study general inference problems that arise from high-dimensional stochastic convex optimization, where the goal is to quantify the uncertainties of the optimal objective value. The third goal is to consider the general stochastic linear bandit problem with a finite and random action space. The principal investigators will develop a new algorithm by using a best-subset-selection type estimator, and the approach achieves a "dimension-free" regret and meets existing lower-bound under the low-dimensional setting.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着数据采集和存储技术的出现,研究人员可以以较低的价格获得大规模、高维的数据集。这些数据集提供了令人兴奋的机会,可以做出更好的决策,揭示新的发现,以改善各种应用中的决策,同时也提出了统计挑战。在过去的几十年里,已经提出了正则化方法,如Lasso, SCAD和MCP,用于在存在高维协变量的情况下进行模型估计。针对这些方法开发了各种数值算法,并对它们的理论性质进行了很好的研究。然而,如何高效、有效地利用高维数据进行最优决策和推理的研究相对较少,尽管这些问题具有重要的现实意义。本项目将发展在高维环境下做出最优决策和进行有效推理的新方法和理论。这些方法有广泛的应用,例如,在个性化医疗中,目标是根据预测信息(包括数千个遗传标记)确定患者的最佳治疗方法。主要研究人员将开发和分发用户友好的开源软件给实践者,并为不同层次的学生提供培训机会。该项目有三个研究目标。第一个目标是研究具有二元动作的高维上下文强盗问题,这是一个在个性化医疗和精准医疗中应用的在线决策问题。在这个问题中,玩家依次选择一个行动并观察奖励,其目标是最大化奖励。主要研究人员将开发一种新的算法来提供最优决策规则,以实现最小最大最优后悔。第二个目标是研究由高维随机凸优化引起的一般推理问题,其目标是量化最优目标值的不确定性。第三个目标是考虑具有有限随机行动空间的一般随机线性强盗问题。研究人员将利用最佳子集选择型估计器开发一种新的算法,该方法在低维设置下实现了“无维”遗憾,并满足现有的下界。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(17)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Distribution Free Conditional Independence Test with Applications to Causal Discovery
  • DOI:
  • 发表时间:
    2021-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhanrui Cai;Runze Li;Yaowu Zhang
  • 通讯作者:
    Zhanrui Cai;Runze Li;Yaowu Zhang
Variable selection for partially linear models via Bayesian subset modeling with diffusing prior
  • DOI:
    10.1016/j.jmva.2021.104733
  • 发表时间:
    2021-02-24
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Wang,Jia;Cai,Xizhen;Li,Runze
  • 通讯作者:
    Li,Runze
A Tuning-free Robust and Efficient Approach to High-dimensional Regression
  • DOI:
    10.1080/01621459.2020.1840989
  • 发表时间:
    2020-10
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Lan Wang;Bo Peng;Jelena Bradic;Runze Li;Y. Wu
  • 通讯作者:
    Lan Wang;Bo Peng;Jelena Bradic;Runze Li;Y. Wu
High-Dimensional Mediation Analysis for Selecting DNA Methylation Loci Mediating Childhood Trauma and Cortisol Stress Reactivity
  • DOI:
    10.1080/01621459.2022.2053136
  • 发表时间:
    2022-03
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Xu Guo;Runze Li;Jingyuan Liu;Mudong Zeng
  • 通讯作者:
    Xu Guo;Runze Li;Jingyuan Liu;Mudong Zeng
Projection-based High-dimensional Sign Test
  • DOI:
    10.1007/s10114-022-0435-9
  • 发表时间:
    2022-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hui Chen;Changhao Zou;Run Ze Li
  • 通讯作者:
    Hui Chen;Changhao Zou;Run Ze Li
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xingyuan Fang其他文献

A robust spider-silk-like calcium alginate fiber with biomineralized rough spindle-knots for water collection
一种用于集水的、具有生物矿化的粗糙纺锤结的类似蜘蛛丝的坚韧海藻酸钙纤维
  • DOI:
    10.1016/j.ijbiomac.2025.141011
  • 发表时间:
    2025-05-01
  • 期刊:
  • 影响因子:
    8.500
  • 作者:
    Xingyuan Fang;Qi Zeng;Yuli Zhang;Haoyue Hou;Dingyi Yang;Kaihui Xu;Ting Guo;Hao Yuan;Tao Meng
  • 通讯作者:
    Tao Meng
Lipase-entrapped colloidosomes with light-responsive wettability for efficient and recyclable Pickering interfacial biocatalysis
具有光响应润湿性的脂肪酶包裹胶体体用于高效可回收的 Pickering 界面生物催化
  • DOI:
    10.1039/d4gc03982c
  • 发表时间:
    2024-09-18
  • 期刊:
  • 影响因子:
    9.200
  • 作者:
    Dingyi Yang;Qi Zeng;Kaiwen Tan;Haoyue Hou;Xingyuan Fang;Chenlong Guo;Hao Yuan;Tao Meng
  • 通讯作者:
    Tao Meng

Xingyuan Fang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xingyuan Fang', 18)}}的其他基金

Collaborative Research: Algorithms for Optimal Adaptive Enrichment Design in Randomized Trial
协作研究:随机试验中最佳自适应富集设计的算法
  • 批准号:
    2230795
  • 财政年份:
    2022
  • 资助金额:
    $ 16万
  • 项目类别:
    Continuing Grant
Collaborative Research: High-Dimensional Decision Making and Inference with Applications for Personalized Medicine
合作研究:高维决策和推理及其在个性化医疗中的应用
  • 批准号:
    2230797
  • 财政年份:
    2022
  • 资助金额:
    $ 16万
  • 项目类别:
    Continuing Grant
Collaborative Research: Algorithms for Optimal Adaptive Enrichment Design in Randomized Trial
协作研究:随机试验中最佳自适应富集设计的算法
  • 批准号:
    1953196
  • 财政年份:
    2020
  • 资助金额:
    $ 16万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Four-Dimensional (4D) Investigation of Tropical Waves Using High-Resolution GNSS Radio Occultation from Strateole2 Balloons
合作研究:利用 Strateole2 气球的高分辨率 GNSS 无线电掩星对热带波进行四维 (4D) 研究
  • 批准号:
    2402729
  • 财政年份:
    2024
  • 资助金额:
    $ 16万
  • 项目类别:
    Continuing Grant
Collaborative Research: Manipulating the Thermal Properties of Two-Dimensional Materials Through Interface Structure and Chemistry
合作研究:通过界面结构和化学控制二维材料的热性能
  • 批准号:
    2400352
  • 财政年份:
    2024
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
Collaborative Research: Manipulating the Thermal Properties of Two-Dimensional Materials Through Interface Structure and Chemistry
合作研究:通过界面结构和化学控制二维材料的热性能
  • 批准号:
    2400353
  • 财政年份:
    2024
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
Collaborative Research: Four-Dimensional (4D) Investigation of Tropical Waves Using High-Resolution GNSS Radio Occultation from Strateole2 Balloons
合作研究:利用 Strateole2 气球的高分辨率 GNSS 无线电掩星对热带波进行四维 (4D) 研究
  • 批准号:
    2402728
  • 财政年份:
    2024
  • 资助金额:
    $ 16万
  • 项目类别:
    Continuing Grant
Collaborative Research: Learning and forecasting high-dimensional extremes: sparsity, causality, privacy
协作研究:学习和预测高维极端情况:稀疏性、因果关系、隐私
  • 批准号:
    2310974
  • 财政年份:
    2023
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
Collaborative Research: EDGE CMT: A four-dimensional genotype-phenotype map of poison frog skin color
合作研究:EDGE CMT:毒蛙肤色的四维基因型-表型图
  • 批准号:
    2319711
  • 财政年份:
    2023
  • 资助金额:
    $ 16万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: Developing and Harnessing the Platform of Quasi-One-Dimensional Topological Materials for Novel Functionalities and Devices
合作研究:DMREF:开发和利用用于新功能和器件的准一维拓扑材料平台
  • 批准号:
    2324033
  • 财政年份:
    2023
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
Collaborative Research: EDGE CMT: A four-dimensional genotype-phenotype map of poison frog skin color
合作研究:EDGE CMT:毒蛙肤色的四维基因型-表型图
  • 批准号:
    2319712
  • 财政年份:
    2023
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
Collaborative Research: Adaptive Data Assimilation for Nonlinear, Non-Gaussian, and High-Dimensional Combustion Problems on Supercomputers
合作研究:超级计算机上非线性、非高斯和高维燃烧问题的自适应数据同化
  • 批准号:
    2403552
  • 财政年份:
    2023
  • 资助金额:
    $ 16万
  • 项目类别:
    Continuing Grant
Collaborative Research: New Theory and Methods for High-Dimensional Multi-Task and Transfer Learning Inference
合作研究:高维多任务和迁移学习推理的新理论和新方法
  • 批准号:
    2324490
  • 财政年份:
    2023
  • 资助金额:
    $ 16万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了