Variational Inference for Complex Networks
复杂网络的变分推理
基本信息
- 批准号:2015561
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Large-scale complex networks are becoming increasingly common in a variety of scientific disciplines, including social sciences, biological sciences, and physical sciences. Such complex networks challenge the computational limit of classical methods, making it infeasible to carry out statistical network inference within a reasonable amount of time. This project will develop efficient algorithms that are computationally feasible for large-scale complex networks and have provable statistical guarantees on performance. The proposed methods will be applied to social and biological network data, including brain networks, and will be used for the study of disorders associated with hearing loss, such as tinnitus. The proposed research is highly interdisciplinary and provides an opportunity for involvement of graduate and undergraduate students with a broad range of backgrounds and interests. The proposed methods will be incorporated into relevant courses. Research results will be disseminated to the scientific communities and all software developed in this research will be freely distributed as open-source to the public.The project will develop variational methods for complex networks, including dynamic, multi-layer, and heterogeneous networks, and investigate theoretical properties of the variational methods on these networks to provide provable statistical guarantees on performance. The network models the PI studies include latent space models for dynamic networks and dynamic multi-layer networks, stochastic block models for multi-layer networks, various models for heterogeneous networks, and other models for complex networks. The proposed variational inference procedure makes it possible to handle large scale complex network data. The theoretical properties the PI will investigate include consistency of parameter estimation and community detection for variational methods. The proposed methods will be applied to real network data from social and natural sciences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
大规模复杂网络在包括社会科学、生物科学和物理科学在内的各种科学学科中变得越来越常见。这样的复杂网络挑战了经典方法的计算极限,使得在合理的时间内进行统计网络推理是不可行的。该项目将开发高效的算法,这些算法在计算上对大规模复杂网络是可行的,并在性能上有可证明的统计保证。建议的方法将应用于社会和生物网络数据,包括大脑网络,并将用于研究与听力损失相关的疾病,如耳鸣。拟议的研究是高度跨学科的,为具有广泛背景和兴趣的研究生和本科生提供了参与的机会。建议的方法将纳入相关课程。研究成果将向科学界传播,所有研究开发的软件将以开源的形式免费向公众分发。该项目将开发复杂网络的变分方法,包括动态、多层和异质网络,并研究这些网络的变分方法的理论性质,为性能提供可证明的统计保证。PI研究的网络模型包括动态网络和动态多层网络的潜在空间模型,多层网络的随机分块模型,异质网络的各种模型,以及其他复杂网络的模型。所提出的变分推理过程使处理大规模复杂网络数据成为可能。PI将研究的理论性质包括参数估计的一致性和变分方法的社区检测。建议的方法将应用于来自社会科学和自然科学的真实网络数据。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Bayesian Nonparametric Latent Space Approach to Modeling Evolving Communities in Dynamic Networks
动态网络中不断演化的社区建模的贝叶斯非参数潜在空间方法
- DOI:10.1214/21-ba1300
- 发表时间:2022
- 期刊:
- 影响因子:4.4
- 作者:Daniel Loyal, Joshua;Chen, Yuguo
- 通讯作者:Chen, Yuguo
Statistical Network Analysis: A Review with Applications to the Coronavirus Disease 2019 Pandemic
- DOI:10.1111/insr.12398
- 发表时间:2020-07
- 期刊:
- 影响因子:2
- 作者:J. Loyal;Yuguo Chen
- 通讯作者:J. Loyal;Yuguo Chen
Testing attributable effects hypotheses with an application to the Oregon Health Insurance Experiment
应用俄勒冈州健康保险实验检验归因效应假设
- DOI:10.4310/22-sii724
- 发表时间:2023
- 期刊:
- 影响因子:0.8
- 作者:Fredrickson, Mark M.;Chen, Yuguo
- 通讯作者:Chen, Yuguo
Variational Inference for Latent Space Models for Dynamic Networks
动态网络潜在空间模型的变分推理
- DOI:10.5705/ss.202020.0506
- 发表时间:2023
- 期刊:
- 影响因子:1.4
- 作者:Liu, Yan;Chen, Yuguo
- 通讯作者:Chen, Yuguo
Mixed Membership Stochastic Blockmodels for Heterogeneous Networks
异构网络的混合隶属随机块模型
- DOI:10.1214/19-ba1163
- 发表时间:2020
- 期刊:
- 影响因子:4.4
- 作者:Huang, Weihong;Liu, Yan;Chen, Yuguo
- 通讯作者:Chen, Yuguo
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yuguo Chen其他文献
Prostaglandin E1 attenuates post-cardiac arrest myocardial dysfunction through inhibition of mitochondria-mediated cardiomyocyte apoptosis
前列腺素 E1 通过抑制线粒体介导的心肌细胞凋亡来减轻心脏骤停后心肌功能障碍
- DOI:
10.3892/mmr.2020.11749 - 发表时间:
2021 - 期刊:
- 影响因子:3.4
- 作者:
Chenglei Su;Xinhui Fan;Feng Xu;Jiali Wang;Yuguo Chen - 通讯作者:
Yuguo Chen
First report of Fusarium sacchari causing root rot of tobacco (Nicotiana tabacum L.) in China
我国首次报道糖镰刀菌引起烟草根腐病
- DOI:
10.1016/j.cropro.2023.106437 - 发表时间:
2023 - 期刊:
- 影响因子:2.8
- 作者:
R. Qiu;Caihong Li;X. Li;Yingying Zhang;Chang Liu;Chenjun Li;Yuguo Chen;J. Bai;Min Xu;Ruifang Song;Shujun Li - 通讯作者:
Shujun Li
Testing the Rasch Model via Sequential Importance Sampling
- DOI:
- 发表时间:
2003 - 期刊:
- 影响因子:0
- 作者:
Yuguo Chen - 通讯作者:
Yuguo Chen
A meta-analysis of the effects of statins on serum C-reactive protein in Chinese population with coronary heart disease or hyperlipidemia
他汀类药物对中国冠心病或高脂血症人群血清C反应蛋白影响的Meta分析
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Panpan Hao;Yuguo Chen;Xing;F. Xu;Jiali Wang;Yun Zhang - 通讯作者:
Yun Zhang
Bayesian Inference for an Unknown Number of Attributes in Restricted Latent Class Models
受限潜在类模型中未知数量属性的贝叶斯推理
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:3
- 作者:
Yinghan Chen;S. Culpepper;Yuguo Chen - 通讯作者:
Yuguo Chen
Yuguo Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yuguo Chen', 18)}}的其他基金
Statistical Inference on Dynamic Networks
动态网络的统计推断
- 批准号:
1406455 - 财政年份:2014
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Sampling for Statistical Inference on Network Data
网络数据统计推断的采样
- 批准号:
1106796 - 财政年份:2011
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Monte Carlo Methods for Complex Problems: From Data Augmentation to Likelihood Free Inference
复杂问题的蒙特卡罗方法:从数据增强到无似然推理
- 批准号:
0806175 - 财政年份:2008
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
CMG--Particle Filtering for Time-Dependent Tomographic Analysis of the Solar Atmosphere
CMG--用于太阳大气瞬态层析成像分析的粒子过滤
- 批准号:
0620550 - 财政年份:2006
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Sequential Monte Carlo Methods for Computationally Intensive Problems
用于计算密集型问题的顺序蒙特卡罗方法
- 批准号:
0503981 - 财政年份:2005
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Sequential Importance Sampling with Resampling and Its Applications
带重采样的顺序重要性采样及其应用
- 批准号:
0203762 - 财政年份:2002
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
相似海外基金
Unravel machine learning blackboxes -- A general, effective and performance-guaranteed statistical framework for complex and irregular inference problems in data science
揭开机器学习黑匣子——针对数据科学中复杂和不规则推理问题的通用、有效和性能有保证的统计框架
- 批准号:
2311064 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Safe and Robust Causal Inference for High-Dimensional Complex Data
高维复杂数据的安全稳健的因果推理
- 批准号:
2311291 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Novel and Rigorous Statistical Learning and Inference for Comparative Effectiveness Research with Complex Data
复杂数据比较有效性研究的新颖而严格的统计学习和推理
- 批准号:
10635323 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Geometry Aware Exploratory Data Analysis and Inference Methods for Complex Data
复杂数据的几何感知探索性数据分析和推理方法
- 批准号:
2311034 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Bayesian machine learning for complex missing data and causal inference with a focus on cardiovascular and obesity studies
用于复杂缺失数据和因果推理的贝叶斯机器学习,重点关注心血管和肥胖研究
- 批准号:
10563598 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Bayesian inference in complex risk assessment with application to health hazards from abiotic toxin exposure
复杂风险评估中的贝叶斯推理及其应用于非生物毒素暴露造成的健康危害
- 批准号:
2902031 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Studentship
CRII: III: Harnessing Deep-Learning to Simplify Biological Inference from Complex Imaging Data
CRII:III:利用深度学习简化复杂成像数据的生物推断
- 批准号:
2246064 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Statistical Inference for Complex Temporal Systems: Non-stationarity, High Dimensionality And Beyond.
复杂时态系统的统计推断:非平稳性、高维性及其他。
- 批准号:
RGPIN-2021-02715 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Discovery Grants Program - Individual
Random Effects Modelling and Inference for Skewed Data of Complex Correlation Structures
复杂相关结构的倾斜数据的随机效应建模和推理
- 批准号:
RGPIN-2020-04751 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Discovery Grants Program - Individual
Statistical Inference and Modelling for Complex Data
复杂数据的统计推断和建模
- 批准号:
RGPIN-2018-06459 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




