Sequential Importance Sampling with Resampling and Its Applications
带重采样的顺序重要性采样及其应用
基本信息
- 批准号:0203762
- 负责人:
- 金额:$ 9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-09-01 至 2005-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Proposal ID: 0203762PI: Yuguo ChenTitle: Sequential importance sampling with resampling and its applicationsAbstract:The Monte Carlo method of sequential importance sampling (SIS) provides a versatile and powerful tool for solving complex statistical inference problems. A number of basic issues concerning the method remain to be resolved for it to be more widely applicable: How should the proposal distribution be chosen to strike a proper balance between computational complexity and statistical efficiency? What is the role of resampling and what is a good choice for the resampling schedule? An objective of this proposal is to address these questions through the detailed study of SIS in three important applications. The first area is time series and stochastic dynamic systems. Research will develop resampling schedules and proposal distributions for SIS to solve some long-standing filtering and smoothing problems in continuous-state hidden Markov models.Change-point problems, which can be seen as a special case of hidden Markov models, will serve as a test ground for the new methodology. The second area is statistical inference in molecular population genetics. Research in this area will enhance currently available SIS methodology by developing a new resampling approach, and by combining such resampling strategy with suitably chosen proposal distributions. The final area of research is conditional inference on contingency and zero-one tables. New theories arising from these applications will be of interest across a broad range of areas.The Monte Carlo method of sequential importance sampling has been fruitfully applied to a wide range of scientific problems including simulating molecules, filtering and smoothing time series arising in engineering and economics, and making Bayesian statistical inferences. However, a number of basic issues need to be resolved to make the method more widely applicable and effective. For example, how should a proper balance be struck between computational complexity and statistical efficiency in implementing the method and what is the role of various enhancements to the method. This research will address these issues through the development of more efficient sequential importance sampling techniques for three important areas of application. The first area is filtering and smoothing problems in continuous-state hidden Markov models, which have important applications in communications signal processing. The second area is statistical inference on genealogical trees. Recent advances in biotechnology have provided an abundance of data on the genetic variation of DNA within a population. This data, which often poses computationally challenging statistical inference problems, can shed light on the evolutionary process of a population and yield important information for locating genes that are responsible for genetic diseases. The third area of application is conditional inference on contingency and zero-one tables, which is motivated by the interest in psychology in testing the Rasch model and in ecology in testing theories about the relationship between evolution and the competition among species. This research will improve the sequential importance sampling methods used in these three applications and strive to develop a systematic theory that provides insight into general strategies for applying sequential importance samplin
摘要:时序重要性抽样(SIS)的蒙特卡罗方法为解决复杂的统计推理问题提供了一个通用的、强大的工具。为了使该方法得到更广泛的应用,关于该方法的一些基本问题仍有待解决:如何选择建议分布以在计算复杂性和统计效率之间取得适当的平衡?重采样的作用是什么,重采样计划的选择是什么?本提案的目标是通过对SIS在三个重要应用中的详细研究来解决这些问题。第一个领域是时间序列和随机动态系统。研究将制定SIS的重采样计划和建议分布,以解决连续状态隐马尔可夫模型中一些长期存在的滤波和平滑问题。变化点问题可以看作是隐马尔可夫模型的一个特例,它将作为新方法的试验场。第二个领域是分子群体遗传学中的统计推断。这一领域的研究将通过开发一种新的重新抽样方法,并通过将这种重新抽样策略与适当选择的提案分布相结合,加强目前可用的SIS方法。最后一个研究领域是关于偶然性和0 - 1表的条件推理。从这些应用中产生的新理论将在广泛的领域引起兴趣。时序重要抽样的蒙特卡罗方法已经成功地应用于广泛的科学问题,包括模拟分子,滤波和平滑工程和经济中的时间序列,以及贝叶斯统计推断。但是,需要解决一些基本问题,以使该方法更广泛地适用和有效。例如,如何在实现该方法的计算复杂性和统计效率之间取得适当的平衡,以及对该方法进行各种增强的作用是什么。本研究将通过为三个重要应用领域开发更有效的顺序重要性采样技术来解决这些问题。第一个领域是连续状态隐马尔可夫模型的滤波和平滑问题,这在通信信号处理中有重要的应用。第二个领域是对家谱树的统计推断。生物技术的最新进展提供了大量关于种群内DNA遗传变异的数据。这些数据通常会带来计算上具有挑战性的统计推断问题,但它们可以揭示种群的进化过程,并为定位导致遗传疾病的基因提供重要信息。第三个应用领域是对偶然性和0 - 1表的条件推理,其动机是心理学对测试Rasch模型的兴趣,以及生态学对测试关于进化与物种间竞争关系的理论的兴趣。本研究将改进这三个应用中使用的顺序重要性抽样方法,并努力发展一个系统的理论,为应用顺序重要性抽样的一般策略提供见解
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yuguo Chen其他文献
Prostaglandin E1 attenuates post-cardiac arrest myocardial dysfunction through inhibition of mitochondria-mediated cardiomyocyte apoptosis
前列腺素 E1 通过抑制线粒体介导的心肌细胞凋亡来减轻心脏骤停后心肌功能障碍
- DOI:
10.3892/mmr.2020.11749 - 发表时间:
2021 - 期刊:
- 影响因子:3.4
- 作者:
Chenglei Su;Xinhui Fan;Feng Xu;Jiali Wang;Yuguo Chen - 通讯作者:
Yuguo Chen
First report of Fusarium sacchari causing root rot of tobacco (Nicotiana tabacum L.) in China
我国首次报道糖镰刀菌引起烟草根腐病
- DOI:
10.1016/j.cropro.2023.106437 - 发表时间:
2023 - 期刊:
- 影响因子:2.8
- 作者:
R. Qiu;Caihong Li;X. Li;Yingying Zhang;Chang Liu;Chenjun Li;Yuguo Chen;J. Bai;Min Xu;Ruifang Song;Shujun Li - 通讯作者:
Shujun Li
Testing the Rasch Model via Sequential Importance Sampling
- DOI:
- 发表时间:
2003 - 期刊:
- 影响因子:0
- 作者:
Yuguo Chen - 通讯作者:
Yuguo Chen
A meta-analysis of the effects of statins on serum C-reactive protein in Chinese population with coronary heart disease or hyperlipidemia
他汀类药物对中国冠心病或高脂血症人群血清C反应蛋白影响的Meta分析
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Panpan Hao;Yuguo Chen;Xing;F. Xu;Jiali Wang;Yun Zhang - 通讯作者:
Yun Zhang
Bayesian Inference for an Unknown Number of Attributes in Restricted Latent Class Models
受限潜在类模型中未知数量属性的贝叶斯推理
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:3
- 作者:
Yinghan Chen;S. Culpepper;Yuguo Chen - 通讯作者:
Yuguo Chen
Yuguo Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yuguo Chen', 18)}}的其他基金
Variational Inference for Complex Networks
复杂网络的变分推理
- 批准号:
2015561 - 财政年份:2020
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Statistical Inference on Dynamic Networks
动态网络的统计推断
- 批准号:
1406455 - 财政年份:2014
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Sampling for Statistical Inference on Network Data
网络数据统计推断的采样
- 批准号:
1106796 - 财政年份:2011
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Monte Carlo Methods for Complex Problems: From Data Augmentation to Likelihood Free Inference
复杂问题的蒙特卡罗方法:从数据增强到无似然推理
- 批准号:
0806175 - 财政年份:2008
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant
CMG--Particle Filtering for Time-Dependent Tomographic Analysis of the Solar Atmosphere
CMG--用于太阳大气瞬态层析成像分析的粒子过滤
- 批准号:
0620550 - 财政年份:2006
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Sequential Monte Carlo Methods for Computationally Intensive Problems
用于计算密集型问题的顺序蒙特卡罗方法
- 批准号:
0503981 - 财政年份:2005
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
相似海外基金
Development of high-accurate measurement technique for real networks by expanding importance sampling simulation
通过扩展重要性采样模拟开发真实网络的高精度测量技术
- 批准号:
18K18035 - 财政年份:2018
- 资助金额:
$ 9万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Importance sampling of chemical compound space: Thermodynamic properties from high-throughput coarse-grained simulations
化合物空间的重要性采样:高通量粗粒度模拟的热力学性质
- 批准号:
285228850 - 财政年份:2016
- 资助金额:
$ 9万 - 项目类别:
Independent Junior Research Groups
Lattice Gauge Theories, Importance Sampling, and Quantum Unique Ergodicity
格规理论、重要性采样和量子唯一遍历性
- 批准号:
1608249 - 财政年份:2016
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant
CIF: Small: Advancing Adaptive Importance Sampling for Signal Processing
CIF:小型:推进信号处理的自适应重要性采样
- 批准号:
1617986 - 财政年份:2016
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Mathematics of importance: The optimal importance sampling algorithm for estimating the probability of a black swan event.
重要性数学:用于估计黑天鹅事件概率的最佳重要性采样算法。
- 批准号:
DE140100993 - 财政年份:2014
- 资助金额:
$ 9万 - 项目类别:
Discovery Early Career Researcher Award
Dependence Modelling and Extreme Value Importance Sampling.
依赖性建模和极值重要性采样。
- 批准号:
461293-2013 - 财政年份:2013
- 资助金额:
$ 9万 - 项目类别:
University Undergraduate Student Research Awards
Combining quasi-Monte Carlo methods and importance sampling
结合准蒙特卡罗方法和重要性采样
- 批准号:
449764-2013 - 财政年份:2013
- 资助金额:
$ 9万 - 项目类别:
University Undergraduate Student Research Awards
Importance Sampling in Promising Search Regions by Asymmetrical Normal Distribution Crossover
通过非对称正态分布交叉对有希望的搜索区域进行重要性采样
- 批准号:
19700228 - 财政年份:2007
- 资助金额:
$ 9万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Importance Sampling and the Subsolutions of an Associated Isaacs Equation
重要性采样和相关 Isaacs 方程的子解
- 批准号:
0706003 - 财政年份:2007
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Collaborative Research: Cetacean Phylogeny: A Reconciliation of Fossil and Neontological Data and the Importance of Taxonomic Sampling
合作研究:鲸类系统发育:化石和新生儿数据的协调以及分类采样的重要性
- 批准号:
0196411 - 财政年份:2001
- 资助金额:
$ 9万 - 项目类别:
Standard Grant