Collaborative Research: High-Dimensional Decision Making and Inference with Applications for Personalized Medicine
合作研究:高维决策和推理及其在个性化医疗中的应用
基本信息
- 批准号:2015568
- 负责人:
- 金额:$ 10万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-15 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
With the advent of data collection and storage technology, researchers can obtain large-scale and high-dimensional datasets at a low price. Such datasets offer exciting opportunities to make better decisions and reveal new discoveries to improve decision making in various applications, and meanwhile, also raise statistical challenges. Over the past decades, regularization methods such as Lasso, SCAD, and MCP have been proposed to conduct model estimation in the presence of high dimensional covariates. Various numerical algorithms have been developed for these methods, and their theoretical properties are well studied. However, questions of how to efficiently and effectively utilize high-dimensional data to make optimal decisions and conduct inference are relatively less studied, although such problems are of vital practical importance. This project will develop new methods and theories for making optimal decisions and conducting valid inference under high-dimensional settings. The methods have wide applications, for instance, in personalized medicine where the goal is to determine the optimal treatments for a patient based on predictor information, including several thousand genetic markers. The principal investigators will develop and distribute user-friendly open-source software to practitioners and provide training opportunities to students at different levels. The project has three research aims. The first aim is to study the high-dimensional contextual bandit problem with binary actions, which is an online decision-making problem that finds applications in personalized healthcare and precision medicine. In this problem, the player sequentially chooses one action and observes a reward, where the goal is to maximize the reward. The principal investigators will develop a new algorithm to provide an optimal decision rule, which achieves the minimax optimal regret. The second aim is to study general inference problems that arise from high-dimensional stochastic convex optimization, where the goal is to quantify the uncertainties of the optimal objective value. The third goal is to consider the general stochastic linear bandit problem with a finite and random action space. The principal investigators will develop a new algorithm by using a best-subset-selection type estimator, and the approach achieves a "dimension-free" regret and meets existing lower-bound under the low-dimensional setting.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着数据收集和存储技术的出现,研究人员可以以较低的价格获得大规模和高维数据集。这些数据集为做出更好的决策提供了令人兴奋的机会,并揭示了新的发现,以改善各种应用中的决策,同时也提出了统计挑战。在过去的几十年里,正则化方法,如Lasso,SCAD和MCP已被提出来进行模型估计,在高维协变量的存在。各种数值算法已经开发了这些方法,他们的理论性能进行了很好的研究。然而,如何有效地利用高维数据进行最优决策和推理的问题相对较少研究,尽管这些问题具有重要的实际意义。该项目将开发新的方法和理论,用于在高维环境下做出最佳决策和进行有效推理。这些方法具有广泛的应用,例如,在个性化医疗中,目标是基于预测信息(包括数千个遗传标记)确定患者的最佳治疗。主要调查员将开发和向从业人员分发方便用户的开放源码软件,并向不同级别的学生提供培训机会。该项目有三个研究目标。第一个目标是研究具有二元动作的高维上下文强盗问题,这是一个在线决策问题,在个性化医疗和精准医疗中有应用。在这个问题中,玩家依次选择一个动作并观察奖励,目标是最大化奖励。主要研究人员将开发一种新的算法,以提供一个最佳的决策规则,实现最小最大的最佳遗憾。第二个目标是研究一般的推理问题,所产生的高维随机凸优化,其目标是量化的最优目标值的不确定性。第三个目标是考虑具有有限随机作用空间的一般随机线性强盗问题。主要研究人员将开发一种新的算法,通过使用最佳子集选择型估计器,该方法实现了“无量纲”遗憾,并满足低维设置下的现有下限。该奖项反映了NSF的法定使命,并已被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Online Bootstrap Inference For Policy Evaluation In Reinforcement Learning
- DOI:10.1080/01621459.2022.2096620
- 发表时间:2021-08
- 期刊:
- 影响因子:3.7
- 作者:Pratik Ramprasad;Yuantong Li;Zhuoran Yang;Zhaoran Wang;W. Sun;Guang Cheng
- 通讯作者:Pratik Ramprasad;Yuantong Li;Zhuoran Yang;Zhaoran Wang;W. Sun;Guang Cheng
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhaoran Wang其他文献
Self-Exploring Language Models: Active Preference Elicitation for Online Alignment
自我探索语言模型:在线对齐的主动偏好诱导
- DOI:
10.48550/arxiv.2405.19332 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Shenao Zhang;Donghan Yu;Hiteshi Sharma;Ziyi Yang;Shuohang Wang;Hany Hassan;Zhaoran Wang - 通讯作者:
Zhaoran Wang
Adaptive Barrier Smoothing for First-Order Policy Gradient with Contact Dynamics
具有接触动力学的一阶策略梯度的自适应障碍平滑
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Shenao Zhang;Wanxin Jin;Zhaoran Wang - 通讯作者:
Zhaoran Wang
Safe MPC Alignment with Human Directional Feedback
安全 MPC 对准与人工定向反馈
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Zhixian Xie;Wenlong Zhang;Yi Ren;Zhaoran Wang;George J. Pappas;Wanxin Jin - 通讯作者:
Wanxin Jin
Offline Reinforcement Learning for Human-Guided Human-Machine Interaction with Private Information
离线强化学习,用于人类引导的私人信息人机交互
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Zuyue Fu;Zhengling Qi;Zhuoran Yang;Zhaoran Wang;Lan Wang - 通讯作者:
Lan Wang
Offline Reinforcement Learning with Instrumental Variables in Confounded Markov Decision Processes
混杂马尔可夫决策过程中使用工具变量的离线强化学习
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Zuyue Fu;Zhengling Qi;Zhaoran Wang;Zhuoran Yang;Yanxun Xu;Michael R. Kosorok - 通讯作者:
Michael R. Kosorok
Zhaoran Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhaoran Wang', 18)}}的其他基金
Collaborative Research: CIF: Medium: Learning to Control from Data: from Theory to Practice
合作研究:CIF:媒介:从数据中学习控制:从理论到实践
- 批准号:
2211210 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
CAREER: Principled Deep Reinforcement Learning for Societal Systems
职业:社会系统的有原则的深度强化学习
- 批准号:
2048075 - 财政年份:2021
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Collaborative Research: CIF: Small: A Unified Framework of Distributional Optimization via Variational Transport
合作研究:CIF:小型:通过变分传输的分布式优化的统一框架
- 批准号:
2008827 - 财政年份:2020
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Four-Dimensional (4D) Investigation of Tropical Waves Using High-Resolution GNSS Radio Occultation from Strateole2 Balloons
合作研究:利用 Strateole2 气球的高分辨率 GNSS 无线电掩星对热带波进行四维 (4D) 研究
- 批准号:
2402729 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Collaborative Research: Manipulating the Thermal Properties of Two-Dimensional Materials Through Interface Structure and Chemistry
合作研究:通过界面结构和化学控制二维材料的热性能
- 批准号:
2400352 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: Manipulating the Thermal Properties of Two-Dimensional Materials Through Interface Structure and Chemistry
合作研究:通过界面结构和化学控制二维材料的热性能
- 批准号:
2400353 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: Four-Dimensional (4D) Investigation of Tropical Waves Using High-Resolution GNSS Radio Occultation from Strateole2 Balloons
合作研究:利用 Strateole2 气球的高分辨率 GNSS 无线电掩星对热带波进行四维 (4D) 研究
- 批准号:
2402728 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Collaborative Research: Learning and forecasting high-dimensional extremes: sparsity, causality, privacy
协作研究:学习和预测高维极端情况:稀疏性、因果关系、隐私
- 批准号:
2310974 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: EDGE CMT: A four-dimensional genotype-phenotype map of poison frog skin color
合作研究:EDGE CMT:毒蛙肤色的四维基因型-表型图
- 批准号:
2319711 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Collaborative Research: DMREF: Developing and Harnessing the Platform of Quasi-One-Dimensional Topological Materials for Novel Functionalities and Devices
合作研究:DMREF:开发和利用用于新功能和器件的准一维拓扑材料平台
- 批准号:
2324033 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: EDGE CMT: A four-dimensional genotype-phenotype map of poison frog skin color
合作研究:EDGE CMT:毒蛙肤色的四维基因型-表型图
- 批准号:
2319712 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: Adaptive Data Assimilation for Nonlinear, Non-Gaussian, and High-Dimensional Combustion Problems on Supercomputers
合作研究:超级计算机上非线性、非高斯和高维燃烧问题的自适应数据同化
- 批准号:
2403552 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Collaborative Research: New Theory and Methods for High-Dimensional Multi-Task and Transfer Learning Inference
合作研究:高维多任务和迁移学习推理的新理论和新方法
- 批准号:
2324490 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant














{{item.name}}会员




