Hardware Friendly Machine Learning Integrated Circuits and System for Low Power Wearable Wireless Electrocardiogram Sensors
适用于低功耗可穿戴无线心电图传感器的硬件友好型机器学习集成电路和系统
基本信息
- 批准号:2015573
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Future wearable wireless biomedical sensors demand novel technologies to overcome the increasing challenge in implementing intelligent signal sensing and processing, the shortage of battery lifetime, as well as latency and security issues. For instance, one major problem with the current U.S. health care systems is that sensing and processing medical data require significant and costly resources. To alleviate this problem, wearable medical devices are expected to provide automatic monitoring and processing of physiological signals and be capable of identifying abnormal signals and contacting medical systems if necessary. Such devices are the key components in the future "unmanned medical nursing systems". The goal of this project is to ultimately address the challenges of next-generation wireless wearable biomedical sensors by systematical efforts, which include interrelated studies in low power circuit design, hardware-friendly algorithm design, and communication system analysis. The project also covers the integrated circuit design and characterization of the overall wearable sensor with the power budget estimation of each individual building block. Since the power-efficient smart wireless device is a critical component for a wide range of existing and emerging mobile sensing systems, the outcomes of this project can result in a direct technological and societal impact on the quality of our lives. To validate the benefits, the project plans to directly explore the research impact of the proposed systems in elderly care applications, which is a particularly important topic for the state of New Mexico. In addition to training undergraduate and graduate students via the proposed research projects, the educational impact of the activities outlined in this project includes increasing participation of minority students and attracting high school students to STEM college programs. Wearable Electrocardiogram (ECG) sensors are one of the important wearable medical devices for arrhythmia detection, as continuous ECG monitoring is needed by patients and even by normal people with uncomfortable heart feelings. A Wearable ECG sensor with wireless body sensor networks is one of the best candidates. Recently, machine learning has become a promising solution and has been applied to continuous monitoring of physiological signals for on-sensor processing. Due to latency, security, and privacy requirement, on-sensor processing rather than sending the raw data to the cloud is preferred in medical devices. Therefore, a machine learning algorithm that can accommodate real-time processing without too much data storage and movement is preferred in wearable sensor applications. This project addresses the fundamental computing issue of the above-mentioned technical challenges in wearable wireless biomedical sensors, especially ECG sensors. The goal is to find an alternative sensing and processing circuit architecture to enable low-computing overhead machine learning algorithms for power-limited wireless sensors with local processing capability. The research aims to significantly advance the state-of-the-art in low-power wireless wearable biomedical sensor architecture by employing ideas in a cross-disciplinary fashion from integrated circuits, hardware-friendly machine learning algorithms, and power-efficient wireless communication systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
未来的可穿戴无线生物医学传感器需要新的技术来克服实现智能信号传感和处理,电池寿命不足以及延迟和安全问题方面日益严峻的挑战。例如,当前美国医疗保健系统的一个主要问题是感测和处理医疗数据需要大量且昂贵的资源。为了缓解这一问题,可穿戴医疗设备有望提供生理信号的自动监测和处理,并能够识别异常信号,并在必要时联系医疗系统。这些设备是未来“无人医疗护理系统”的关键部件。本计画的目标是透过系统性的研究,以解决下一代无线可穿戴生物医学感测器所面临的挑战,包括低功率电路设计、硬体友善演算法设计、以及通讯系统分析等相关研究。该项目还包括整体可穿戴传感器的集成电路设计和表征,以及每个构建块的功率预算估计。由于高能效智能无线设备是各种现有和新兴移动的传感系统的关键组件,因此该项目的成果可能会对我们的生活质量产生直接的技术和社会影响。为了验证这些好处,该项目计划直接探索拟议系统在老年人护理应用中的研究影响,这对新墨西哥州来说是一个特别重要的话题。除了通过拟议的研究项目培训本科生和研究生外,该项目中概述的活动的教育影响包括增加少数民族学生的参与,吸引高中生参加STEM大学课程。可穿戴心电图(ECG)传感器是用于心律失常检测的重要可穿戴医疗设备之一,因为患者甚至心脏感觉不舒服的正常人都需要连续的ECG监测。一个可穿戴心电传感器与无线身体传感器网络是最好的候选人之一。最近,机器学习已经成为一种很有前途的解决方案,并已被应用于连续监测生理信号,以进行传感器处理。由于延迟、安全性和隐私要求,在医疗设备中,传感器处理而不是将原始数据发送到云是首选。因此,在可穿戴传感器应用中,可以适应实时处理而没有太多数据存储和移动的机器学习算法是优选的。该项目解决了可穿戴无线生物医学传感器,特别是心电传感器中上述技术挑战的基本计算问题。我们的目标是找到一种替代的传感和处理电路架构,以实现低计算开销的机器学习算法,用于具有本地处理能力的功率受限的无线传感器。该研究旨在通过采用集成电路,硬件友好的机器学习算法,和权力-该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查进行评估,被认为值得支持的搜索.
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Joint Learning and Channel Coding for Error-Tolerant IoT Systems based on Machine Learning
基于机器学习的容错物联网系统的联合学习和信道编码
- DOI:10.1109/tai.2023.3235778
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Tang, Xiaochen;Reviriego, Pedro;Tang, Wei;Mitchell, David G.;Lombardi, Fabrizio;Liu, Shanshan
- 通讯作者:Liu, Shanshan
Dynamic Predictive Sampling Analog to Digital Converter for Sparse Signal Sensing
- DOI:10.1109/tcsii.2023.3238279
- 发表时间:2022-11
- 期刊:
- 影响因子:0
- 作者:Xiaochen Tang;Mario Renteria-Pinon;Wei-Chien Tang
- 通讯作者:Xiaochen Tang;Mario Renteria-Pinon;Wei-Chien Tang
An ECG Delineation and Arrhythmia Classification System Using Slope Variation Measurement by Ternary Second-Order Delta Modulators for Wearable ECG Sensors
使用三元二阶 Delta 调制器对可穿戴 ECG 传感器进行斜率变化测量的 ECG 描绘和心律失常分类系统
- DOI:10.1109/tbcas.2021.3113665
- 发表时间:2021
- 期刊:
- 影响因子:5.1
- 作者:Tang, Xiaochen;Tang, Wei
- 通讯作者:Tang, Wei
Real-Time In-Sensor Slope Level-Crossing Sampling for Key Sampling Points Selection for Wearable and IoT Devices
用于可穿戴和物联网设备关键采样点选择的实时传感器内斜率平交采样
- DOI:10.1109/jsen.2023.3243460
- 发表时间:2023
- 期刊:
- 影响因子:4.3
- 作者:Renteria-Pinon, Mario;Tang, Xiaochen;Tang, Wei
- 通讯作者:Tang, Wei
A Near-sensor ECG Delineation and Arrhythmia Classification System
近传感器心电图描绘和心律失常分类系统
- DOI:10.1109/jsen.2022.3183136
- 发表时间:2022
- 期刊:
- 影响因子:4.3
- 作者:Tang, Xiaochen;Liu, Shanshan;Reviriego, Pedro;Lombardi, Fabrizio;Tang, Wei
- 通讯作者:Tang, Wei
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wei Tang其他文献
A review of biochar potential in Cote d’Ivoire in light of the challenges facing Sub-Saharan Africa
鉴于撒哈拉以南非洲地区面临的挑战,审查科特达瓦的生物炭潜力
- DOI:
10.1016/j.biombioe.2022.106581 - 发表时间:
2022-10 - 期刊:
- 影响因子:6
- 作者:
Bi Lepohi Guy Laurent Zanli;Koudou Christophe Gbossou;Wei Tang;Michael Kamoto;Jiawei Chen - 通讯作者:
Jiawei Chen
Colonization and Gut Flora Modulation of Lactobacillus kefiranofaciens ZW3 in the Intestinal Tract of Mice
开菲拉乳杆菌 ZW3 在小鼠肠道中的定植和肠道菌群调节
- DOI:
10.1007/s12602-017-9288-4 - 发表时间:
2018-06 - 期刊:
- 影响因子:4.9
- 作者:
Zhuqing Xing;Wei Tang;Ying Yang;Weitao Geng;Rizwan Ur Rehman;Yanping Wang - 通讯作者:
Yanping Wang
在脓毒症小鼠模型中Progranulin缺失导致严重炎症、肺损伤和细胞死亡
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Yizhe Cheng;Hongyan Wang;Weiming Zhao;Wei Tang - 通讯作者:
Wei Tang
Erosion of limestone building surfaces caused by wind-driven rain: 2. Numerical modeling
风雨对石灰岩建筑表面的侵蚀:2.数值模拟
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
Wei Tang;C. Davidson - 通讯作者:
C. Davidson
Insight into the Mechanism of Humic Acid’s Dissolution Capacity for Lignin in the Biomass Substrates
深入了解腐殖酸对生物质基质中木质素的溶解能力的机制
- DOI:
10.1021/acssuschemeng.2c05471 - 发表时间:
2022-10 - 期刊:
- 影响因子:8.4
- 作者:
Wei Tang;Caoxing Huang;Zhe Ling;Chenhuan Lai;Qiang Yong - 通讯作者:
Qiang Yong
Wei Tang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wei Tang', 18)}}的其他基金
CAREER:Integrated Research and Education on Delta-Sigma Based Digital Signal Processing Circuits for Low-Power Intelligent Sensors
职业:针对低功耗智能传感器的基于 Delta-Sigma 的数字信号处理电路的综合研究和教育
- 批准号:
1652944 - 财政年份:2017
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
I-Corps: Non-weighted Digital Circuits for Low Power Wearable Medical Device
I-Corps:用于低功耗可穿戴医疗设备的非加权数字电路
- 批准号:
1556290 - 财政年份:2015
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research:CCSS:Low-ComplexityWireless Sensor Architectures Based on Asynchronous Processing
合作研究:CCSS:基于异步处理的低复杂度无线传感器架构
- 批准号:
1408019 - 财政年份:2014
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似海外基金
Screening of environmentally friendly quantum-nanocrystals for energy and bioimaging applications by combining experiment and theory with machine learning
通过将实验和理论与机器学习相结合,筛选用于能源和生物成像应用的环保量子纳米晶体
- 批准号:
23K20272 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Customizable Artificial Intelligence for the Biomedical Masses: Development of a User-Friendly Automated Machine Learning Platform for Biology Image Analysis.
面向生物医学大众的可定制人工智能:开发用于生物图像分析的用户友好的自动化机器学习平台。
- 批准号:
10699828 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Machine Learning Approach to Identify Environmentally Friendly Alternatives to SF6 for Electricity Networks
用于识别电力网络 SF6 环保替代品的机器学习方法
- 批准号:
2856914 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Studentship
Screening of environmentally friendly quantum-nanocrystals for energy and bioimaging applications by combining experiment and theory with machine learning
通过将实验和理论与机器学习相结合,筛选用于能源和生物成像应用的环保量子纳米晶体
- 批准号:
20H02579 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of adoptive nonlinear myoelectric signal detection technique for user-friendly man-machine interface
开发用户友好的人机界面采用非线性肌电信号检测技术
- 批准号:
18H01487 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Machine Learning for Privacy-Friendly Visual Analytics
用于隐私友好的视觉分析的机器学习
- 批准号:
511901-2017 - 财政年份:2017
- 资助金额:
$ 40万 - 项目类别:
University Undergraduate Student Research Awards
User-Friendly Large-Scale Machine Learning
用户友好的大规模机器学习
- 批准号:
497469-2016 - 财政年份:2016
- 资助金额:
$ 40万 - 项目类别:
University Undergraduate Student Research Awards
User-Friendly Large-Scale Machine Learning
用户友好的大规模机器学习
- 批准号:
482307-2015 - 财政年份:2015
- 资助金额:
$ 40万 - 项目类别:
University Undergraduate Student Research Awards
Hardware-friendly machine learning with integer-parameter regularized learning based on discrete convexity
基于离散凸性的整数参数正则化学习的硬件友好型机器学习
- 批准号:
25540102 - 财政年份:2013
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
An Environmentally Friendly Electropolishing Machine for Titanium
环保型钛电解抛光机
- 批准号:
9361973 - 财政年份:1994
- 资助金额:
$ 40万 - 项目类别:
Standard Grant














{{item.name}}会员




