A Novel Approach to System Identification using Artificial Neural Networks
使用人工神经网络进行系统识别的新方法
基本信息
- 批准号:2016004
- 负责人:
- 金额:$ 38.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The importance of accurate mathematical models for systems of physical, biological, and technological interest cannot be overstated. These models allow researchers to understand, analyze, and predict the behavior of such systems. Unfortunately, it is often impossible to derive mathematical models from first principles, in particular for many biological systems, for which important underlying processes are exceedingly complex or are not well understood, but for which ample data can be obtained. In such cases, system identification is a powerful tool which can be used to deduce mathematical models from observed data. The research will use artificial neural networks, a powerful form of machine learning, to dynamically generate the terms in a model with the necessary complexity and nonlinearity to accurately describe a system's dynamics. This new method of system identification will be also useful for non-biological systems, including virtually any system for which "black box" modeling approaches, which make predictions without any detailed understanding of the inner workings of the model, have been applied.The research will accomplish system identification of ordinary differential equation models through a multilayered, operation-based symbolic regression approach, with the capacity to learn compound operations by training appropriate artificial neural networks. Unlike many existing system identification techniques, it does not require pre-specification of a dictionary of possible terms, which constrain the possible models which can be obtained. This new approach provides a powerful alternative to genetic programming strategies for symbolic regression, and can exploit many of the attractive features of artificial neural networks such as a straightforward learning strategy and a large corpus of research on extensions and optimizations. This strategy will be adapted to allow for symbolic dimension reduction, the treatment of symmetries and constraints, the identification of stochastic differential equation models for noisy systems, the determination of hidden variables for the models, and the generation of candidate Lyapunov functions which can be used to prove the stability of equilibrium solutions to given models.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
精确的数学模型对于物理、生物和技术系统的重要性怎么强调都不为过。这些模型使研究人员能够理解、分析和预测这些系统的行为。不幸的是,通常不可能从第一原理推导出数学模型,特别是对于许多生物系统,其中重要的潜在过程非常复杂或不太清楚,但可以获得充足的数据。在这种情况下,系统识别是一个强大的工具,可用于从观测数据推断数学模型。该研究将使用人工神经网络,一种强大的机器学习形式,在具有必要复杂性和非线性的模型中动态生成术语,以准确描述系统的动态。这种系统识别的新方法也将对非生物系统有用,包括几乎任何“黑箱”建模方法的系统,这种方法在没有任何详细了解模型内部工作原理的情况下进行预测。该研究将通过多层、基于运算的符号回归方法来完成常微分方程模型的系统识别,并通过训练适当的人工神经网络来学习复合运算。与许多现有的系统识别技术不同,它不需要预先指定可能术语的字典,这限制了可以获得的可能模型。这种新方法为符号回归提供了一种强大的替代遗传规划策略,并且可以利用人工神经网络的许多吸引人的特征,例如直接的学习策略和大量关于扩展和优化的研究。该策略将适用于符号降维、对称性和约束的处理、噪声系统随机微分方程模型的识别、模型隐变量的确定以及候选Lyapunov函数的生成,该函数可用于证明给定模型的平衡解的稳定性。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeffrey Moehlis其他文献
Controlling Spike Timing and Synchrony in Oscillatory Neurons.
控制振荡神经元的尖峰时序和同步。
- DOI:
10.1152/jn.00898.2010 - 发表时间:
2011 - 期刊:
- 影响因子:2.5
- 作者:
Tyler W. Stigen;P. Danzl;Jeffrey Moehlis;T. Netoff - 通讯作者:
T. Netoff
Jeffrey Moehlis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeffrey Moehlis', 18)}}的其他基金
Collaborative Research: Understanding and Optimizing Dynamic Stimulation for Improvement of Short- and Long-term Brain Function
合作研究:理解和优化动态刺激以改善短期和长期大脑功能
- 批准号:
1635542 - 财政年份:2016
- 资助金额:
$ 38.34万 - 项目类别:
Standard Grant
Optimal Termination of Spiral Waves Associated with Cardiac Arrhythmias
与心律失常相关的螺旋波的最佳终止
- 批准号:
1363243 - 财政年份:2014
- 资助金额:
$ 38.34万 - 项目类别:
Standard Grant
Collaborative research: Optimal stimulus waveform design for Parkinson's disease
合作研究:帕金森病的最佳刺激波形设计
- 批准号:
1264535 - 财政年份:2013
- 资助金额:
$ 38.34万 - 项目类别:
Standard Grant
Broadband Vibrational Energy Harvesting
宽带振动能量收集
- 批准号:
1131052 - 财政年份:2011
- 资助金额:
$ 38.34万 - 项目类别:
Standard Grant
CAREER: Dynamics of Individual and Coupled Oscillators
职业:个体和耦合振荡器的动力学
- 批准号:
0547606 - 财政年份:2006
- 资助金额:
$ 38.34万 - 项目类别:
Standard Grant
Collaborative Research: MSPA-CSE: Equation-Free Modeling of Biological Self Organization: Coarse Computational Swarming
合作研究:MSPA-CSE:生物自组织的无方程建模:粗计算集群
- 批准号:
0434328 - 财政年份:2004
- 资助金额:
$ 38.34万 - 项目类别:
Standard Grant
相似国自然基金
EnSite array指导下对Stepwise approach无效的慢性房颤机制及消融径线设计的实验研究
- 批准号:81070152
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:面上项目
相似海外基金
A Novel Gene Therapy Approach to Prevent Alpha-synuclein Misfolding in Multiple System Atrophy
一种防止多系统萎缩中α-突触核蛋白错误折叠的新基因治疗方法
- 批准号:
10673418 - 财政年份:2023
- 资助金额:
$ 38.34万 - 项目类别:
Novel Optical Imaging Approach to Study Neurovascular Coupling System
研究神经血管耦合系统的新型光学成像方法
- 批准号:
10528336 - 财政年份:2022
- 资助金额:
$ 38.34万 - 项目类别:
A Novel Approach to Mitigating Power System Communication Failures
缓解电力系统通信故障的新方法
- 批准号:
2208218 - 财政年份:2022
- 资助金额:
$ 38.34万 - 项目类别:
Standard Grant
The Royal-Imperial Black Box: A low cost and novel approach for enhanced power system cyber-security featuring moving target defence
皇家帝国黑匣子:一种低成本、新颖的方法,用于增强电力系统网络安全,具有移动目标防御功能
- 批准号:
10017536 - 财政年份:2021
- 资助金额:
$ 38.34万 - 项目类别:
Collaborative R&D
The Royal-Imperial Black Box: A low cost and novel approach for enhanced power system cyber-security featuring moving target defence.
皇家帝国黑匣子:一种低成本、新颖的方法,用于增强电力系统网络安全,具有移动目标防御功能。
- 批准号:
10002804 - 财政年份:2021
- 资助金额:
$ 38.34万 - 项目类别:
Collaborative R&D
Novel system biology approach to identify proteomic and metabolic mediators of disease
识别疾病蛋白质组和代谢介质的新系统生物学方法
- 批准号:
563074-2021 - 财政年份:2021
- 资助金额:
$ 38.34万 - 项目类别:
University Undergraduate Student Research Awards
Outpatient Worsening Heart Failure in an Integrated Health Care Delivery System: An Innovative Approach to Characterizing a Novel Clinical Entity
综合医疗服务系统中门诊患者心力衰竭恶化:表征新临床实体的创新方法
- 批准号:
10685420 - 财政年份:2020
- 资助金额:
$ 38.34万 - 项目类别:
Outpatient Worsening Heart Failure in an Integrated Health Care Delivery System: An Innovative Approach to Characterizing a Novel Clinical Entity
综合医疗服务系统中门诊患者心力衰竭恶化:表征新临床实体的创新方法
- 批准号:
10475613 - 财政年份:2020
- 资助金额:
$ 38.34万 - 项目类别:
Outpatient Worsening Heart Failure in an Integrated Health Care Delivery System: An Innovative Approach to Characterizing a Novel Clinical Entity
综合医疗服务系统中门诊患者心力衰竭恶化:表征新临床实体的创新方法
- 批准号:
10222774 - 财政年份:2020
- 资助金额:
$ 38.34万 - 项目类别:
Outpatient Worsening Heart Failure in an Integrated Health Care Delivery System: An Innovative Approach to Characterizing a Novel Clinical Entity
综合医疗服务系统中门诊患者心力衰竭恶化:表征新临床实体的创新方法
- 批准号:
10054615 - 财政年份:2020
- 资助金额:
$ 38.34万 - 项目类别: