A Novel Gene Therapy Approach to Prevent Alpha-synuclein Misfolding in Multiple System Atrophy
一种防止多系统萎缩中α-突触核蛋白错误折叠的新基因治疗方法
基本信息
- 批准号:10673418
- 负责人:
- 金额:$ 23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-15 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AdoptedBindingBiological ModelsBrainCell LineCellsCentral Nervous SystemClustered Regularly Interspaced Short Palindromic RepeatsComplexCryoelectron MicroscopyCultured CellsDependovirusDiseaseFYN geneGenesGoalsGreekHumanIn VitroKineticsLipid BindingMeasuresMediatingMembraneModelingMolecular ConformationMovement DisordersMultiple System AtrophyMusMutationNeurodegenerative DisordersNeuronsParkinson DiseasePathogenicityPatientsPoint MutationPositioning AttributePrion DiseasesPrionsProcessProteinsResearchRoleSNAP receptorSamplingSeminalSodium ChlorideStructureTechniquesTerminal DiseaseTestingTherapeuticTherapeutic InterventionTransgenic MiceTransgenic OrganismsWorkalpha synucleinclinical candidateexperimental studygene therapyin vivoinnovationknock-downloss of functionnovelnovel therapeutic interventionpreventprime editingprion-likeprotein aggregationprotein misfoldingtherapeutic developmenttransmission blockingtransmission processtreatment strategy
项目摘要
Multiple system atrophy (MSA) is a prion-like movement disorder caused by misfolding and self-
templating of the protein α-synuclein (α-syn), which spreads throughout the central nervous system to cause
progressive degeneration. Similar to many other prion and prion-like neurodegenerative diseases, there are
currently no therapeutics available that alter the course of disease for MSA patients. To interfere with α-syn
self-templating, several groups have proposed various strategies for knocking down α-syn expression to
reduce the amount of protein available as substrate. Unfortunately, these strategies may interfere with normal
α-syn function in the brain, leading to loss-of-function deficits for MSA patients. Alternatively, MSA cannot
propagate in transgenic (Tg) cells or mice expressing α-syn with the E46K mutation, raising the possibility of
using gene therapy to generate conversion-incompetent α-syn to disrupt self-templating. However, to date, this
approach has not been tested as a therapeutic intervention for MSA. The objective of the proposed work is to
establish proof-of-concept that introducing a single residue change in the α-syn primary sequence can disrupt
templated misfolding. We hypothesize that generating conversion-incompetent α-syn using CRISPR prime
editing will reduce or prevent MSA propagation. Our approach will capitalize on our recent discovery that non-
pathogenic α-syn mutations at residue K80 inhibit MSA propagation in vitro. In Aim 1, we will use CRISPR
prime editing to insert our novel K80 mutations into Tg cells and mice expressing wild-type human α-syn prior
to challenging the models with MSA patient samples. We have shown that MSA induces α-syn aggregation in
unedited cells and mice expressing wild-type protein. We anticipate that successful gene editing will block
transmission to these model systems. Cryo-electron microscopy has been used to resolve the structures of α-
syn fibrils in MSA patient samples. This work has shown that misfolded α-syn adopts a Greek key
conformation that is stabilized by a salt bridge between residues E46 and K80. In Aim 2, we will determine if
our non-pathogenic K80 mutations exert their protective effectives by preventing salt bridge formation. We will
also quantify the effect of these mutations on lipid binding and protein fibrillization. These orthogonal studies
will determine if the K80 mutations are a viable clinical candidate for an MSA gene therapy. This work is
innovative because it represents a paradigm-shift in how we approach gene therapies. Rather than focusing on
correcting a disease-causing point mutation, we will establish proof-of-concept that gene therapy can be used
to interfere with the self-templating disease mechanism underlying prion and prion-like neurodegenerative
disorders. This work is significant because it has the potential to serve as a novel treatment strategy for
patients with both sporadic and familial prion-like diseases. Through investigating the ability of conversion-
incompetent α-syn to prevent MSA propagation, this work has the potential to transform the way we approach
therapeutic development for neurodegenerative disease patients.
多系统萎缩(MSA)是一种朊病毒样运动障碍,由错误折叠和自我修复引起。
蛋白质α-突触核蛋白(α-syn)的模板化,它遍布整个中枢神经系统,导致
进行性退化与许多其他朊病毒和朊病毒样神经退行性疾病相似,
目前没有可用于改变MSA患者的病程的治疗剂。干扰α-syn
自模板,几个小组提出了各种策略敲低α-syn表达,
减少可用作底物的蛋白质的量。不幸的是,这些策略可能会干扰正常的
大脑中的α-syn功能,导致MSA患者的功能缺失。或者,MSA不能
在表达具有E46 K突变的α-syn的转基因(Tg)细胞或小鼠中繁殖,
使用基因疗法来产生不能转化的α-syn来破坏自我模板。然而,到目前为止,这
该方法尚未被测试为MSA的治疗干预。拟议工作的目标是
建立概念验证,即在α-syn一级序列中引入单个残基变化可以破坏
模板错误折叠我们假设使用CRISPR引物产生转化不合格的α-syn
编辑将减少或防止MSA传播。我们的方法将利用我们最近的发现,非-
在残基K80处的致病性α-syn突变在体外抑制MSA增殖。在目标1中,我们将使用CRISPR
引物编辑将我们的新型K80突变插入Tg细胞和表达野生型人α-syn prior的小鼠中
用MSA患者样本挑战模型我们已经表明,MSA诱导α-syn聚集,
未编辑的细胞和表达野生型蛋白的小鼠。我们预计,成功的基因编辑将阻止
传输到这些模型系统。低温电子显微镜已被用来解决结构的α-
MSA患者样品中的顺式纤维。这项工作表明,错误折叠的α-syn采用希腊密钥
通过残基E46和K80之间的盐桥稳定的构象。在目标2中,我们将确定
我们的非致病性K80突变通过防止盐桥形成而发挥其保护作用。我们将
还量化了这些突变对脂质结合和蛋白质固定化的影响。这些正交研究
将确定K80突变是否是MSA基因治疗的可行临床候选者。这项工作是
创新,因为它代表了我们如何对待基因疗法的范式转变。而不是专注于
纠正致病的点突变,我们将建立概念验证,基因治疗可以用于
干扰朊病毒和朊病毒样神经退行性疾病的自我模板机制
紊乱这项工作是重要的,因为它有可能作为一种新的治疗策略,
散发性和家族性朊病毒样疾病患者。通过对转化能力的考察-
不称职的α-syn防止MSA传播,这项工作有可能改变我们的方法
神经退行性疾病患者的治疗开发。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amanda L. Woerman其他文献
Effect of host and strain factors on α-synuclein prion pathogenesis
宿主和毒株因素对α-突触核蛋白朊病毒发病机制的影响
- DOI:
10.1016/j.tins.2024.05.004 - 发表时间:
2024-07-01 - 期刊:
- 影响因子:15.100
- 作者:
Amanda L. Woerman;Jason C. Bartz - 通讯作者:
Jason C. Bartz
Amanda L. Woerman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Amanda L. Woerman', 18)}}的其他基金
Effect of agent and host factors on alpha-synuclein strain pathogenesis
病原体和宿主因素对α-突触核蛋白菌株发病机制的影响
- 批准号:
10754428 - 财政年份:2022
- 资助金额:
$ 23万 - 项目类别:
Effect of agent and host factors on alpha-synuclein strain pathogenesis
病原体和宿主因素对α-突触核蛋白菌株发病机制的影响
- 批准号:
10678036 - 财政年份:2022
- 资助金额:
$ 23万 - 项目类别:
Effect of agent and host factors on alpha-synuclein strain pathogenesis
病原体和宿主因素对α-突触核蛋白菌株发病机制的影响
- 批准号:
10375265 - 财政年份:2022
- 资助金额:
$ 23万 - 项目类别:
Effect of Agent and Host Factors on Alpha-Synuclein Strain Pathogenesis
试剂和宿主因素对 α-突触核蛋白菌株发病机制的影响
- 批准号:
10546484 - 财政年份:2022
- 资助金额:
$ 23万 - 项目类别:
相似国自然基金
帽结合蛋白(cap binding protein)调控乙烯信号转导的分子机制
- 批准号:32170319
- 批准年份:2021
- 资助金额:58.00 万元
- 项目类别:面上项目
帽结合蛋白(cap binding protein)调控乙烯信号转导的分子机制
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:
ID1 (Inhibitor of DNA binding 1) 在口蹄疫病毒感染中作用机制的研究
- 批准号:31672538
- 批准年份:2016
- 资助金额:62.0 万元
- 项目类别:面上项目
番茄EIN3-binding F-box蛋白2超表达诱导单性结实和果实成熟异常的机制研究
- 批准号:31372080
- 批准年份:2013
- 资助金额:80.0 万元
- 项目类别:面上项目
P53 binding protein 1 调控乳腺癌进展转移及化疗敏感性的机制研究
- 批准号:81172529
- 批准年份:2011
- 资助金额:58.0 万元
- 项目类别:面上项目
DBP(Vitamin D Binding Protein)在多发性硬化中的作用和相关机制的蛋白质组学研究
- 批准号:81070952
- 批准年份:2010
- 资助金额:35.0 万元
- 项目类别:面上项目
研究EB1(End-Binding protein 1)的癌基因特性及作用机制
- 批准号:30672361
- 批准年份:2006
- 资助金额:24.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
- 批准号:
2321481 - 财政年份:2024
- 资助金额:
$ 23万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
- 批准号:
2321480 - 财政年份:2024
- 资助金额:
$ 23万 - 项目类别:
Continuing Grant
Postdoctoral Fellowship: OPP-PRF: Understanding the Role of Specific Iron-binding Organic Ligands in Governing Iron Biogeochemistry in the Southern Ocean
博士后奖学金:OPP-PRF:了解特定铁结合有机配体在控制南大洋铁生物地球化学中的作用
- 批准号:
2317664 - 财政年份:2024
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
Conformations of musk odorants and their binding to human musk receptors
麝香气味剂的构象及其与人类麝香受体的结合
- 批准号:
EP/X039420/1 - 财政年份:2024
- 资助金额:
$ 23万 - 项目类别:
Research Grant
NPBactID - Differential binding of peptoid functionalized nanoparticles to bacteria for identifying specific strains
NPBactID - 类肽功能化纳米粒子与细菌的差异结合,用于识别特定菌株
- 批准号:
EP/Y029542/1 - 财政年份:2024
- 资助金额:
$ 23万 - 项目类别:
Fellowship
Alkane transformations through binding to metals
通过与金属结合进行烷烃转化
- 批准号:
DP240103289 - 财政年份:2024
- 资助金额:
$ 23万 - 项目类别:
Discovery Projects
I-Corps: Translation Potential of Real-time, Ultrasensitive Electrical Transduction of Biological Binding Events for Pathogen and Disease Detection
I-Corps:生物结合事件的实时、超灵敏电转导在病原体和疾病检测中的转化潜力
- 批准号:
2419915 - 财政年份:2024
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
The roles of a universally conserved DNA-and RNA-binding domain in controlling MRSA virulence and antibiotic resistance
普遍保守的 DNA 和 RNA 结合域在控制 MRSA 毒力和抗生素耐药性中的作用
- 批准号:
MR/Y013131/1 - 财政年份:2024
- 资助金额:
$ 23万 - 项目类别:
Research Grant
CRII: OAC: Development of a modular framework for the modeling of peptide and protein binding to membranes
CRII:OAC:开发用于模拟肽和蛋白质与膜结合的模块化框架
- 批准号:
2347997 - 财政年份:2024
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
How lipid binding proteins shape the activity of nuclear hormone receptors
脂质结合蛋白如何影响核激素受体的活性
- 批准号:
DP240103141 - 财政年份:2024
- 资助金额:
$ 23万 - 项目类别:
Discovery Projects