Collaborative Research: Adaptive explicit and implicit feedback in second language pronunciation training

合作研究:第二语言发音训练中的自适应显式和隐式反馈

基本信息

  • 批准号:
    2016984
  • 负责人:
  • 金额:
    $ 41.7万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

Over one million international students study at US universities, and the majority study in STEM (Science, Technology, Engineering, and Mathematics) fields. All need to communicate in English, which requires intelligible pronunciation. The conventional wisdom is that simple immersion in the English-speaking environment will, over time, improve pronunciation. Research, however, rejects this view: without instruction that is explicitly focused on pronunciation (e.g., the vowels in "bad" vs. "bed"), learners are only likely to improve within the first year in the new environment, and instruction is needed after that. Unfortunately, face-to-face pronunciation instruction is infrequent, thus making computer-assisted pronunciation training (CAPT) the best option for pronunciation training at scale. CAPT programs are common, but share a critical weakness of not providing effective feedback to the learner. This project will examine the usefulness of two complementary forms of pronunciation feedback in CAPT: explicit feedback (focused on delivering precise instruction to the learner about the location and nature of pronunciation errors) and implicit feedback (relying on the learner's ability to perceive their mispronunciations). To this end, the investigators will develop mispronunciation-detection algorithms that can highlight errors in the learner's speech (explicit feedback), and they will create accent-conversion algorithms that can generate personalized speech samples for the learner: their own voice producing native-speech (implicit feedback). Specifically, the investigators will develop a machine-learning framework to solve the problems of mispronunciation detection and accent conversion simultaneously. Research in machine learning shown that solving multiple tasks simultaneously can improve learning efficiency and generalization performance, so long as the tasks are related. Thus, this award offers the potential to advance the state-of-the-art in both problems. The two forms of pronunciation feedback (explicit and implicit) will be integrated into a CAPT system that automatically adapts to the learner's current performance to maximize the benefits for the learner as they develop their accuracy. The system will use an adaptive tutoring algorithm to guide the learner in first establishing perception of their pronunciation difficulties and then enhancing their production accuracy.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
超过100万国际学生在美国大学学习,大多数在STEM(科学,技术,工程和数学)领域学习。所有人都需要用英语交流,这需要清晰的发音。传统的观点认为,简单地沉浸在讲英语的环境中,随着时间的推移,会改善发音。然而,研究拒绝了这一观点:如果没有明确关注发音的教学(例如,“bad”vs.“bed”中的元音),学习者在新环境中只可能在第一年内有所提高,之后需要指导。不幸的是,面对面的发音教学是罕见的,因此使计算机辅助发音训练(CAPT)的最佳选择,发音训练的规模。CAPT程序很常见,但有一个关键的弱点,即不能向学习者提供有效的反馈。本项目将研究CAPT中两种互补形式的发音反馈的有用性:明确的反馈(侧重于向学习者提供关于发音错误的位置和性质的精确指导)和隐含的反馈(依赖于学习者感知其错误发音的能力)。为此,研究人员将开发能够突出学习者语音中错误的发音检测算法(显式反馈),并创建能够为学习者生成个性化语音样本的口音转换算法:他们自己的声音产生母语语音(隐式反馈)。具体来说,研究人员将开发一个机器学习框架,以同时解决发音错误检测和口音转换的问题。 机器学习的研究表明,同时解决多个任务可以提高学习效率和泛化性能,只要任务是相关的。因此,该奖项提供了在这两个问题上推进最先进技术的潜力。这两种形式的发音反馈(显性和隐性)将被整合到CAPT系统中,该系统将自动适应学习者当前的表现,以最大限度地提高学习者的准确性。该系统将使用自适应辅导算法,引导学习者首先建立对发音困难的感知,然后提高他们的发音准确性。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Levis其他文献

A Dynamic CT Image Reconstruction Method by Inducing Prior Information from PCA Analysis
一种从PCA分析中引入先验信息的动态CT图像重建方法
The impact of functional load and cumulative errors on listeners' judgments of comprehensibility and accentedness
  • DOI:
    10.1016/j.system.2022.102906
  • 发表时间:
    2022-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Mutleb Alnafisah;Erik Goodale;Ivana Rehman;John Levis;Tim Kochem
  • 通讯作者:
    Tim Kochem

John Levis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Levis', 18)}}的其他基金

EXP: Collaborative Research: Perception and Production in Second Language: The Roles of Voice Variability and Familiarity
EXP:协作研究:第二语言的感知和产生:语音变异性和熟悉度的作用
  • 批准号:
    1623622
  • 财政年份:
    2016
  • 资助金额:
    $ 41.7万
  • 项目类别:
    Standard Grant
RI: Small: Collaborative Research: Developing Golden Speakers for Second-Language Pronunciation Training.
RI:小型:合作研究:开发第二语言发音训练的黄金演讲者。
  • 批准号:
    1618953
  • 财政年份:
    2016
  • 资助金额:
    $ 41.7万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
  • 批准号:
    2335802
  • 财政年份:
    2024
  • 资助金额:
    $ 41.7万
  • 项目类别:
    Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
  • 批准号:
    2335801
  • 财政年份:
    2024
  • 资助金额:
    $ 41.7万
  • 项目类别:
    Standard Grant
Collaborative Research: Uncovering the adaptive origins of fossil apes through the application of a transdisciplinary approach
合作研究:通过应用跨学科方法揭示类人猿化石的适应性起源
  • 批准号:
    2316612
  • 财政年份:
    2024
  • 资助金额:
    $ 41.7万
  • 项目类别:
    Standard Grant
Collaborative Research: Uncovering the adaptive origins of fossil apes through the application of a transdisciplinary approach
合作研究:通过应用跨学科方法揭示类人猿化石的适应性起源
  • 批准号:
    2316615
  • 财政年份:
    2024
  • 资助金额:
    $ 41.7万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2413579
  • 财政年份:
    2024
  • 资助金额:
    $ 41.7万
  • 项目类别:
    Standard Grant
Collaborative Research: Uncovering the adaptive origins of fossil apes through the application of a transdisciplinary approach
合作研究:通过应用跨学科方法揭示类人猿化石的适应性起源
  • 批准号:
    2316614
  • 财政年份:
    2024
  • 资助金额:
    $ 41.7万
  • 项目类别:
    Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
  • 批准号:
    2335800
  • 财政年份:
    2024
  • 资助金额:
    $ 41.7万
  • 项目类别:
    Standard Grant
Collaborative Research: Uncovering the adaptive origins of fossil apes through the application of a transdisciplinary approach
合作研究:通过应用跨学科方法揭示类人猿化石的适应性起源
  • 批准号:
    2316613
  • 财政年份:
    2024
  • 资助金额:
    $ 41.7万
  • 项目类别:
    Standard Grant
Collaborative Research: DESC: Type I: FLEX: Building Future-proof Learning-Enabled Cyber-Physical Systems with Cross-Layer Extensible and Adaptive Design
合作研究:DESC:类型 I:FLEX:通过跨层可扩展和自适应设计构建面向未来的、支持学习的网络物理系统
  • 批准号:
    2324936
  • 财政年份:
    2024
  • 资助金额:
    $ 41.7万
  • 项目类别:
    Standard Grant
Collaborative Research: DESC: Type I: FLEX: Building Future-proof Learning-Enabled Cyber-Physical Systems with Cross-Layer Extensible and Adaptive Design
合作研究:DESC:类型 I:FLEX:通过跨层可扩展和自适应设计构建面向未来的、支持学习的网络物理系统
  • 批准号:
    2324937
  • 财政年份:
    2024
  • 资助金额:
    $ 41.7万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了