RI: Small: Collaborative Research: Developing Golden Speakers for Second-Language Pronunciation Training.
RI:小型:合作研究:开发第二语言发音训练的黄金演讲者。
基本信息
- 批准号:1618953
- 负责人:
- 金额:$ 12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
People who learn a second language (L2) as adults often speak with a persistent foreign accent. This can make them less intelligible, more subject to discrimination, and less confident when interacting with others. Surprisingly, though, L2 learners rarely receive formal training in pronunciation, in part because effective training must be customized to meet each learner's individual needs. To address this gap, the investigators propose to develop algorithms to synthesize a personalized "golden speaker" for each learner: his or her own voice but with a native accent. The rationale is that, by listening to their own golden speaker, learners can more easily perceive differences between their actual and ideal pronunciations. This work focuses on developing the technology for golden speakers, which the investigators plan to evaluate in the future as a new tool for pronunciation learning systems. As such, this research can benefit a large number of workers in the US who are non-native speakers of English, particularly in higher education, health care and the technology sector. The project also provides opportunities for graduate and undergraduate students to conduct research in a multi-disciplinary team with expertise in signal processing, machine learning, and language acquisition. Two types of golden-speaker model are proposed. The first type is based on a reformulation of parametric statistical models for voice conversion, where instead of force-aligning source (native) and target (non-native) frames, they are matched based on their phonetic similarity. Several similarity metrics are proposed, from vocal-tract-length normalization to deep auto-encoders. The second type is based on a sparse representation of speech, which models individual frames as linear combinations of phonetic anchors. This requires new techniques to transform the constellation of anchors in the L2 speech to match the structure of native anchors (e.g., pairwise distances). Two types of evaluation are proposed for the golden-speaker models: their ability to interpolate phones not included in the learner's inventory, and the accent, intelligibility and comprehensibility of the resulting speech, as rated by native English listeners. For this purpose, the investigators propose to collect a large speech corpus from multiple Spanish and Korean learners of English and Indian speakers of English, each at different levels of English proficiency.
成年后学习第二语言(L2)的人说话时往往带有顽固的外国口音。这可能会使他们更难理解,更容易受到歧视,在与他人互动时也会变得更不自信。然而,令人惊讶的是,二语学习者很少接受正式的发音培训,部分原因是有效的培训必须定制以满足每个学习者的个人需求。为了弥补这一差距,研究人员提议开发算法,为每个学习者合成一个个性化的“黄金演讲者”:他或她自己的声音,但带有母语口音。理由是,通过听他们自己的黄金演讲者,学习者可以更容易地感知到他们的实际发音和理想发音之间的差异。这项工作的重点是开发黄金扬声器技术,研究人员计划在未来对其进行评估,将其作为发音学习系统的新工具。因此,这项研究可以使大量非英语母语的美国工人受益,特别是在高等教育、医疗保健和科技行业。该项目还为研究生和本科生提供了在具有信号处理、机器学习和语言习得专业知识的多学科团队中进行研究的机会。提出了两种黄金说话人模型。第一种类型基于用于语音转换的参数统计模型的重新表述,其中,不是强制对准源(本地)和目标(非本地)帧,而是基于它们的语音相似性进行匹配。提出了几种相似性度量,从声道长度归一化到深度自动编码器。第二种类型基于语音的稀疏表示,它将单个帧建模为语音锚的线性组合。这需要新的技术来变换L2语音中的锚的星座以匹配本地锚的结构(例如,成对距离)。对于黄金说话人模型,我们提出了两种评估方法:一种是插入学习者清单中未包含的音素的能力,另一种是由英语母语者评定的最终语音的口音、可理解性和可理解性。为此,研究人员建议从多名西班牙语和韩语英语学习者和说英语的印度人那里收集大量语音语料库,每个人的英语熟练程度都不同。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Levis其他文献
A Dynamic CT Image Reconstruction Method by Inducing Prior Information from PCA Analysis
一种从PCA分析中引入先验信息的动态CT图像重建方法
- DOI:
10.1109/icmla.2009.77 - 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
X. Jia;Y. Lou;Ruijiang Li;X. Gu;John Levis;Steve B. Jiang - 通讯作者:
Steve B. Jiang
The impact of functional load and cumulative errors on listeners' judgments of comprehensibility and accentedness
- DOI:
10.1016/j.system.2022.102906 - 发表时间:
2022-11-01 - 期刊:
- 影响因子:
- 作者:
Mutleb Alnafisah;Erik Goodale;Ivana Rehman;John Levis;Tim Kochem - 通讯作者:
Tim Kochem
John Levis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Levis', 18)}}的其他基金
Collaborative Research: Adaptive explicit and implicit feedback in second language pronunciation training
合作研究:第二语言发音训练中的自适应显式和隐式反馈
- 批准号:
2016984 - 财政年份:2020
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
EXP: Collaborative Research: Perception and Production in Second Language: The Roles of Voice Variability and Familiarity
EXP:协作研究:第二语言的感知和产生:语音变异性和熟悉度的作用
- 批准号:
1623622 - 财政年份:2016
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
相似国自然基金
昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
- 批准号:32000033
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
- 批准号:31972324
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
- 批准号:81900988
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
- 批准号:31870821
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
- 批准号:31802058
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
- 批准号:31772128
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
- 批准号:81704176
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
- 批准号:91640114
- 批准年份:2016
- 资助金额:85.0 万元
- 项目类别:重大研究计划
相似海外基金
Collaborative Research: RI: Small: Foundations of Few-Round Active Learning
协作研究:RI:小型:少轮主动学习的基础
- 批准号:
2313131 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Collaborative Research: RI: Small: Deep Constrained Learning for Power Systems
合作研究:RI:小型:电力系统的深度约束学习
- 批准号:
2345528 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Collaborative Research: RI: Small: Motion Fields Understanding for Enhanced Long-Range Imaging
合作研究:RI:小型:增强远程成像的运动场理解
- 批准号:
2232298 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Collaborative Research: RI: Small: End-to-end Learning of Fair and Explainable Schedules for Court Systems
合作研究:RI:小型:法院系统公平且可解释的时间表的端到端学习
- 批准号:
2232055 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Collaborative Research: RI: Small: End-to-end Learning of Fair and Explainable Schedules for Court Systems
合作研究:RI:小型:法院系统公平且可解释的时间表的端到端学习
- 批准号:
2232054 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Collaborative Research: RI: Small: Motion Fields Understanding for Enhanced Long-Range Imaging
合作研究:RI:小型:增强远程成像的运动场理解
- 批准号:
2232300 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Collaborative Research: RI: Small: Motion Fields Understanding for Enhanced Long-Range Imaging
合作研究:RI:小型:增强远程成像的运动场理解
- 批准号:
2232299 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Collaborative Research: RI: Small: End-to-end Learning of Fair and Explainable Schedules for Court Systems
合作研究:RI:小型:法院系统公平且可解释的时间表的端到端学习
- 批准号:
2334936 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Collaborative Research: RI: Small: Foundations of Few-Round Active Learning
协作研究:RI:小型:少轮主动学习的基础
- 批准号:
2313130 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
RI: Small: Collaborative Research: Evolutionary Approach to Optimal Morphology and Control of Transformable Soft Robots
RI:小型:协作研究:可变形软机器人的最佳形态和控制的进化方法
- 批准号:
2325491 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Standard Grant