I-Corps: Optimization-driven high-density air traffic management software for large-scale drone operations
I-Corps:用于大规模无人机操作的优化驱动的高密度空中交通管理软件
基本信息
- 批准号:2018127
- 负责人:
- 金额:$ 5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-01 至 2023-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The broader impact/commercial potential of this I-Corps project is to develop technology to make the low-altitude airspace more accessible for commercial drone delivery operations while ensuring a high level of operational safety and efficiency. Large-scale, organized deployment of delivery drones can unlock substantial efficiency gain in transportation systems in terms of reduced road congestion, reduced CO2 emission; in addition, it would offer health and convenience benefits to senior citizens, the ill, and mobility-challenged members of society. However, existing drone delivery practices are limited in scope, scale, and operating conditions due to inefficient air traffic management (ATM) paradigms. This project aims to discover a viable business model for translating technological innovations in unmanned ATM into an operable, city-scale, fully automated drone delivery system. The proposed system would allow safe use of the low-altitude airspace at an unprecedented density and efficiency, generating enormous savings for last-mile deliveries. This I-Corps project explores the development of a suite of novel optimization-driven algorithms in the areas of motion-planning, dynamic vehicle routing, communication and risk minimization to provide real-time ATM and trajectory control for a cooperative fleet of drones navigating a shared airspace. Existing ATM methods leave excessive separation margins due to human-level response time and control dexterity. In contrast, the proposed new system is optimized for high-density air traffic conditions, offering the capability to generate real-time adjustments to 4D flight trajectories, tolerating a smaller separation margin, and overseeing safe execution of control commands across the fleet. In a plug-and-play fashion, the proposed system will turn a collection of heterogeneous multicopter drones into an organized and intelligent fleet. The competitive advantage lies in the fusion of the state-of-the-art operations research (OR) models and algorithms onto drone platforms via commoditized cloud computing, IoT and communication infrastructures.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个I-Corps项目的更广泛的影响/商业潜力是开发技术,使商业无人机交付操作更容易进入低空空域,同时确保高水平的操作安全和效率。大规模、有组织地部署送货无人机可以在减少道路拥堵、减少二氧化碳排放方面为交通系统带来实质性的效率提升;此外,它还将为老年人、病人和行动不便的社会成员提供健康和便利。然而,由于空中交通管理(ATM)模式效率低下,现有的无人机交付实践在范围,规模和操作条件方面受到限制。该项目旨在探索一种可行的商业模式,将无人驾驶ATM的技术创新转化为可操作的城市规模的全自动无人机交付系统。拟议中的系统将允许以前所未有的密度和效率安全使用低空空域,为最后一英里交付节省大量资金。这个I-Corps项目探索了在运动规划,动态车辆路线,通信和风险最小化领域开发一套新颖的优化驱动算法,为无人机的合作舰队提供实时ATM和轨迹控制。现有的ATM方法由于人类水平的响应时间和控制灵活性而留下过多的分离裕度。相比之下,拟议中的新系统针对高密度空中交通条件进行了优化,提供了对4D飞行轨迹进行实时调整的能力,允许较小的间隔裕度,并监督整个机队控制命令的安全执行。以即插即用的方式,拟议的系统将把一系列异构的多旋翼无人机变成一个有组织的智能舰队。竞争优势在于通过商品化的云计算、物联网和通信基础设施将最先进的运筹学(OR)模型和算法融合到无人机平台上。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Routing battery-constrained delivery drones in a depot network: A business model and its optimization–simulation assessment
- DOI:10.1016/j.trc.2023.104147
- 发表时间:2023-07
- 期刊:
- 影响因子:0
- 作者:Yan-chun Liu
- 通讯作者:Yan-chun Liu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yanchao Liu其他文献
Preparation of Porous Composite Bio-carriers from Lignin-Carbohydrate Complexes and Cellulose Nanocrystals, and their Application in the Culture of Human Hepatocytes
木质素-碳水化合物复合物和纤维素纳米晶多孔复合生物载体的制备及其在人肝细胞培养中的应用
- DOI:
10.15376/biores.14.3.6465-6484 - 发表时间:
2019-06 - 期刊:
- 影响因子:1.5
- 作者:
Hongfei Wu;Yimin Xie;Houkuan Zhao;Xuekuan Chen;Chen Jiang;Shuying Bi;Yanchao Liu - 通讯作者:
Yanchao Liu
The Existence of Cellulose and Lignin Chemical Connections in Ginkgo Traced by 2H-13C Dual Isotopes
2H-13C 双同位素追踪银杏中纤维素和木质素化学连接的存在
- DOI:
10.15376/biores.15.4.9028-9044 - 发表时间:
2020 - 期刊:
- 影响因子:1.5
- 作者:
Yimin Xie;Yanchao Liu;Chen Jinag;Hongfei Wu;Shuying Bi - 通讯作者:
Shuying Bi
Study on mathematical model of hydration expansion of steel slag-cement composite cementitious material
钢渣-水泥复合胶凝材料水化膨胀数学模型研究
- DOI:
10.1080/09593330.2020.1713906 - 发表时间:
2020-01 - 期刊:
- 影响因子:2.8
- 作者:
Yinan Weng;Yanchao Liu;Jiaxiang Liu - 通讯作者:
Jiaxiang Liu
Feasibility assessment of enhancing permeability and stability in marine hydrate reservoirs with dual-enhanced stimulation: Slurry-sediment cementation characteristics
双重强化增产措施提高海洋水合物储层渗透率和稳定性的可行性评估:泥浆-沉积物胶结特性
- DOI:
10.1016/j.apor.2025.104545 - 发表时间:
2025-05-01 - 期刊:
- 影响因子:4.400
- 作者:
Fang Jin;Feng Huang;Guobiao Zhang;Bing Li;Yanchao Liu;Jianguo Lv - 通讯作者:
Jianguo Lv
Bidirectional temporal and frame-segment attention for sparse action segmentation of figure skating
- DOI:
10.1016/j.cviu.2024.104186 - 发表时间:
2024-12-01 - 期刊:
- 影响因子:
- 作者:
Yanchao Liu;Xina Cheng;Yuan Li;Takeshi Ikenaga - 通讯作者:
Takeshi Ikenaga
Yanchao Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yanchao Liu', 18)}}的其他基金
CAREER: Integrative Resource Optimization Framework for Large-scale Drone Delivery Systems
职业:大型无人机交付系统的综合资源优化框架
- 批准号:
1944068 - 财政年份:2020
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
供应链管理中的稳健型(Robust)策略分析和稳健型优化(Robust Optimization )方法研究
- 批准号:70601028
- 批准年份:2006
- 资助金额:7.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: MoDL: Graph-Optimized Cellular Connectionism via Artificial Neural Networks for Data-Driven Modeling and Optimization of Complex Systems
合作研究:MoDL:通过人工神经网络进行图优化的细胞连接,用于复杂系统的数据驱动建模和优化
- 批准号:
2234032 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Data-Driven Shape Optimization Problem toward Shock Wave Boundary Layer Interaction
冲击波边界层相互作用的数据驱动形状优化问题
- 批准号:
23K03659 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: SWIFT: Data Driven Learning and Optimization in Reconfigurable Intelligent Surface Enabled Industrial Wireless Network for Advanced Manufacturing
合作研究:SWIFT:先进制造可重构智能表面工业无线网络中的数据驱动学习和优化
- 批准号:
2414946 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Collaborative Research: MoDL: Graph-Optimized Cellular Connectionism via Artificial Neural Networks for Data-Driven Modeling and Optimization of Complex Systems
合作研究:MoDL:通过人工神经网络进行图优化的细胞连接,用于复杂系统的数据驱动建模和优化
- 批准号:
2234031 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Data-Driven Scheduling of Orthopaedic Surgical Services: An End-to-End Framework with Machine Learning and Mathematical Optimization
数据驱动的骨科手术服务调度:具有机器学习和数学优化的端到端框架
- 批准号:
490488 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Operating Grants
SCH: Simulation Optimization of Cardiac Surgical Planning
SCH:心脏手术计划的模拟优化
- 批准号:
10816654 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
CAREER: Data-driven dynamic adaptive optimization for next generation power system operation
职业:数据驱动的下一代电力系统运行的动态自适应优化
- 批准号:
2316675 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Performance-Driven Robust Topology Optimization of Functionally Graded Lattice Structures
功能梯度晶格结构的性能驱动的鲁棒拓扑优化
- 批准号:
EP/Y023455/1 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Fellowship
Collaborative Research: SHF: Small: Model-driven Design and Optimization of Dataflows for Scientific Applications
协作研究:SHF:小型:科学应用数据流的模型驱动设计和优化
- 批准号:
2331153 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Model-driven Design and Optimization of Dataflows for Scientific Applications
协作研究:SHF:小型:科学应用数据流的模型驱动设计和优化
- 批准号:
2331152 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Standard Grant