Collaborative Research: SHF: Small: Model-driven Design and Optimization of Dataflows for Scientific Applications
协作研究:SHF:小型:科学应用数据流的模型驱动设计和优化
基本信息
- 批准号:2331153
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2025-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The increasing capability of high-performance computing (HPC), cloud computing, and edge computing systems directly translates into the ability to generate more data and execute more extended analyses, thus expanding the range of natural phenomena that scientists can study using dataflows in scientific domains such as chemistry, materials sciences, molecular biology, and drug design. At the same time, the steady growth in the complexity of these dataflows also results in new challenges in the effective composition of single data tasks into scalable dataflow pipelines. This project addresses these critical challenges by developing solutions to optimize dataflow pipelines across heterogeneous resources. This project builds a broader community of HPC experts, who will have a far-reaching impact on the efficient development of dataflow pipelines supporting scientific applications. The team of researchers promotes increased participation of underrepresented students, particularly women, through mentoring students in Systers (the organization for women in Electrical Engineering and Computer Science at the University of Tennessee Knoxville). Furthermore, the researchers develop data analytics training tailored for early career professionals and share the material with the Midwest Research Computing and Data Consortium and the attendees at the bi-annual NSF/TCPP (Technical Community on Parallel Processing) workshops on parallel and distributed computing education (EduPar). This project has four main research components. First, the project defines a taxonomy of common dataflow motifs used in scientific domains, ranging from simple producer-consumer pairs to complex pipelines with multiple producers and consumers, by mapping these motifs to real scientific applications. Second, the project designs a middleware layer to handle dataflow pipelines executing on HPC, cloud, and edge resources. Third, the project develops a 2-step model for mitigating pipelines that result in data loss and inefficiencies associated with the slowdown in data production or consumption in dataflow pipelines. Finally, the project trains a broader community to utilize the taxonomy, middleware, and model to optimize real scientific applications by identifying potential bottlenecks and making necessary adjustments to maximize pipeline efficiency and accuracy, continuously monitoring and optimizing pipelines to ensure the highest quality scientific output possible.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
高性能计算(HPC)、云计算和边缘计算系统的能力不断增强,直接转化为生成更多数据和执行更多扩展分析的能力,从而扩大了科学家可以在化学、材料科学、分子生物学和药物设计等科学领域使用卷积来研究的自然现象的范围。与此同时,这些数据流复杂性的稳步增长也给将单个数据任务有效组合到可扩展的数据流管道中带来了新的挑战。该项目通过开发解决方案来优化跨异构资源的流水线,从而解决这些关键挑战。该项目建立了一个更广泛的HPC专家社区,他们将对支持科学应用的高性能管道的有效开发产生深远的影响。 研究人员小组通过在Systers(田纳西大学诺克斯维尔的电气工程和计算机科学妇女组织)指导学生,促进代表性不足的学生,特别是妇女的更多参与。此外,研究人员还为早期职业专业人士开发了量身定制的数据分析培训,并与中西部研究计算和数据联盟以及两年一度的NSF/TCPP(并行处理技术社区)并行和分布式计算教育研讨会(EduPar)的与会者分享材料。该项目有四个主要研究组成部分。首先,该项目定义了科学领域中使用的常见数据流基序的分类,从简单的生产者-消费者对到具有多个生产者和消费者的复杂管道,通过将这些基序映射到真实的科学应用。其次,该项目设计了一个中间件层来处理在HPC、云和边缘资源上执行的并行流水线。第三,该项目开发了一个两步模型,用于缓解管道,这些管道导致数据丢失和低效率,这些数据丢失和低效率与低流量管道中数据生产或消费的放缓有关。最后,该项目培训更广泛的社区利用分类法,中间件和模型,通过识别潜在的瓶颈并进行必要的调整来优化真实的科学应用,以最大限度地提高管道效率和准确性,持续监控和优化管道,以确保最高质量的科学产出。该奖项反映了NSF的法定使命,并通过使用基金会的学术价值和更广泛的影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ewa Deelman其他文献
Mapping Abstract Complex Workflows onto Grid Environments
- DOI:
10.1023/a:1024000426962 - 发表时间:
2003-01-01 - 期刊:
- 影响因子:2.900
- 作者:
Ewa Deelman;James Blythe;Yolanda Gil;Carl Kesselman;Gaurang Mehta;Karan Vahi;Kent Blackburn;Albert Lazzarini;Adam Arbree;Richard Cavanaugh;Scott Koranda - 通讯作者:
Scott Koranda
Advancing Anomaly Detection in Computational Workflows with Active Learning
通过主动学习推进计算工作流程中的异常检测
- DOI:
10.48550/arxiv.2405.06133 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Krishnan Raghavan;George Papadimitriou;Hongwei Jin;A. Mandal;Mariam Kiran;Prasanna Balaprakash;Ewa Deelman - 通讯作者:
Ewa Deelman
A terminology for scientific workflow systems
科学工作流系统的术语
- DOI:
10.1016/j.future.2025.107974 - 发表时间:
2026-01-01 - 期刊:
- 影响因子:6.100
- 作者:
Frédéric Suter;Tainã Coleman;İlkay Altintaş;Rosa M. Badia;Bartosz Balis;Kyle Chard;Iacopo Colonnelli;Ewa Deelman;Paolo Di Tommaso;Thomas Fahringer;Carole Goble;Shantenu Jha;Daniel S. Katz;Johannes Köster;Ulf Leser;Kshitij Mehta;Hilary Oliver;J.-Luc Peterson;Giovanni Pizzi;Loïc Pottier;Rafael Ferreira da Silva - 通讯作者:
Rafael Ferreira da Silva
Broadening Student Engagement To Build the Next Generation of Cyberinfrastructure Professionals
扩大学生参与度,培养下一代网络基础设施专业人员
- DOI:
10.1145/3569951.3597567 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Angela Murillo;Don Brower;Sarowar Hossain;K. Kee;A. Mandal;J. Nabrzyski;Erik Scott;Nicole K. Virdone;Rodney Ewing;Ewa Deelman - 通讯作者:
Ewa Deelman
How is Artificial Intelligence Changing Science?
人工智能如何改变科学?
- DOI:
10.1109/e-science58273.2023.10254913 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Ewa Deelman - 通讯作者:
Ewa Deelman
Ewa Deelman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ewa Deelman', 18)}}的其他基金
Collaborative Research: CyberTraining: Implementation: Medium: CyberInfrastructure Training and Education for Synchrotron X-Ray Science (X-CITE)
合作研究:网络培训:实施:媒介:同步加速器 X 射线科学网络基础设施培训和教育 (X-CITE)
- 批准号:
2320375 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
CI CoE: CI Compass: An NSF Cyberinfrastructure (CI) Center of Excellence for Navigating the Major Facilities Data Lifecycle
CI CoE:CI Compass:用于导航主要设施数据生命周期的 NSF 网络基础设施 (CI) 卓越中心
- 批准号:
2127548 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: Elements: Simulation-driven Evaluation of Cyberinfrastructure Systems
协作研究:要素:网络基础设施系统的仿真驱动评估
- 批准号:
2103508 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: Simulation-driven runtime resource management for distributed workflow applications
协作研究:OAC Core:分布式工作流应用程序的模拟驱动的运行时资源管理
- 批准号:
2106147 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: VisDict - Visual Dictionaries for Enhancing the Communication between Domain Scientists and Scientific Workflow Providers
协作研究:EAGER:VisDict - 用于增强领域科学家和科学工作流程提供商之间沟通的视觉词典
- 批准号:
2100636 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Advancing Reproducibility in Multi-Messenger Astrophysics
合作研究:EAGER:提高多信使天体物理学的可重复性
- 批准号:
2041901 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Leveraging Advanced Cyberinfrastructure and Developing Organizational Resilience for NSF Large Facilities in the Pandemic Era
合作研究:EAGER:在大流行时代利用先进的网络基础设施并提高 NSF 大型设施的组织弹性
- 批准号:
2042054 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: PPoSS: Planning: Performance Scalability, Trust, and Reproducibility: A Community Roadmap to Robust Science in High-throughput Applications
协作研究:PPoSS:规划:性能可扩展性、信任和可重复性:高通量应用中稳健科学的社区路线图
- 批准号:
2028930 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
2019 NSF Workshop on Connecting Large Facilities and Cyberinfrastructure
2019 年 NSF 连接大型设施和网络基础设施研讨会
- 批准号:
1933353 - 财政年份:2019
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Pilot Study for a Cyberinfrastructure Center of Excellence
网络基础设施卓越中心试点研究
- 批准号:
1842042 - 财政年份:2018
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331302 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331301 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
- 批准号:
2403134 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2412357 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
- 批准号:
2402804 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
- 批准号:
2403408 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Toward Understandability and Interpretability for Neural Language Models of Source Code
合作研究:SHF:媒介:实现源代码神经语言模型的可理解性和可解释性
- 批准号:
2423813 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
- 批准号:
2402806 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
- 批准号:
2403135 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
- 批准号:
2403409 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant