MRI: Development of Grand-Scale Atmospheric Imaging Apparatus (GAIA) for Field Characterization of Atmospheric Flows and Particle Transport
MRI:开发大型大气成像设备 (GAIA),用于大气流动和颗粒输运的现场表征
基本信息
- 批准号:2018658
- 负责人:
- 金额:$ 101.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Understanding the flow and transport of particles (e.g., snow, sand, pollens, etc.) in atmospheric environments is critical for applications related to wind energy, meteorology (e.g., snow settling), geomorphology (e.g., desert migration), oceanography (e.g., spray generation), agriculture (e.g., pollen dispersal), public health (e.g., airborne disease transmission), etc. These processes involve flows over a broad range of spatial and temporal scales and complex atmospheric phenomena which are impossible to be fully reproduced in the laboratory. Conventional field measurements (e.g. meteorological tower, LiDAR, Sodar and Radar) of these processes do not have sufficient resolutions to probe into their detailed underlying physics. To bridge this gap, with a team of flow physicists, computer scientists, and engineers, the proposal aims to develop a Grand-scale Atmospheric Imaging Apparatus (GAIA), a stand-alone and imaging-based field measuring system, able to quantify atmospheric flows and particle transport over large sample regions with unprecedented spatiotemporal resolution. Though collaboration with 11 university, national labs and industries across the globe, GAIA will enable fundamental and applied research across engineering, geoscience and computer science, and will support a number of existing educational programs involving underrepresented groups and minorities. The goal of the project is to develop a Grand-scale Atmospheric Imaging Apparatus (GAIA), envisioned as a field instrument conducting particle image/tracking velocimetry (PIV/PTV) by exploiting particles (e.g., snow, sand, pollen, droplets, etc.) naturally present in the atmosphere to investigate both flow (using them as tracers) and the transport of the particles themselves depending on their inertial properties with respect to the flow. The development of GAIA innovates every single component of conventional PIV/PTV including both the hardware and processing software to address key challenges in conducting high-resolution flow imaging under harsh field conditions. Specifically, GAIA involves multi-mode and multi configuration Lego design and mechanical automation for the hardware and an integration of PIV/PTV concept with state-of-the-art machine learning multiview 3D scene reconstruction for data processing. Such innovation enables GAIA to conduct high-resolution imaging of flow and particle transport across a broad range of scales with sample volumes up to orders of magnitude larger than those of conventional PIV/PTVs. In addition, GAIA incorporates several unique sensors (e.g., digital inline holography) for in situ characterization of meteorological conditions and particle properties (e.g. shape, concentration, etc.) with unprecedented details. The GAIA will be tested under different field conditions in conjunction with cutting-edge 3D Doppler scanning LiDARs. Such integration enables the first-ever measurements of atmospheric flow and particle transport from sub-meter to kilometer scales, providing benchmark datasets not only for the fundamental study of atmospheric flow and particle transport, but also for learning-based motion reconstruction in computer science.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
了解颗粒的流动和运输(例如,雪、沙、花粉等)对于与风能,气象学(例如,雪沉降),地貌(例如,沙漠迁移),海洋学(例如,喷雾产生),农业(例如,花粉传播),公共卫生(例如,这些过程涉及到大范围空间和时间尺度上的流动以及复杂的大气现象,这些现象在实验室中不可能完全重现。这些过程的常规现场测量(例如气象塔、激光雷达、声雷达和雷达)没有足够的分辨率来探测其详细的基本物理。为了弥合这一差距,与一个由流动物理学家,计算机科学家和工程师组成的团队一起,该提案旨在开发一种大规模大气成像装置(GAIA),这是一种独立的基于成像的现场测量系统,能够以前所未有的时空分辨率量化大样本区域的大气流动和颗粒传输。通过与地球仪的11所大学,国家实验室和行业的合作,GAIA将使工程,地球科学和计算机科学的基础和应用研究成为可能,并将支持一些涉及代表性不足的群体和少数民族的现有教育计划。该项目的目标是开发一个大规模的大气成像装置(GAIA), 被设想为通过利用粒子进行粒子图像/跟踪测速(PIV/PTV)的现场仪器(例如,雪、沙、花粉、水滴等)自然存在于大气中,以研究流动(使用它们作为示踪剂)和颗粒本身的传输,这取决于它们相对于流动的惯性特性。GAIA的开发创新了传统PIV/PTV的每一个组件,包括硬件和处理软件,以解决在恶劣的现场条件下进行高分辨率流动成像的关键挑战。具体来说,GAIA涉及多模式和多配置乐高设计和机械自动化的硬件和PIV/PTV概念与最先进的机器学习多视图3D场景重建数据处理的集成。这种创新使GAIA能够在广泛的尺度范围内对流动和颗粒传输进行高分辨率成像,样品体积比传统的PIV/PTV大几个数量级。此外,GAIA还集成了几个独特的传感器(例如,数字同轴全息术)用于现场表征气象条件和颗粒特性(例如形状、浓度等)。前所未有的细节。GAIA将在不同的现场条件下与尖端的3D多普勒扫描激光雷达一起进行测试。这种集成使首次对从亚米到公里尺度的大气流动和颗粒物传输进行测量成为可能,不仅为大气流动和颗粒物传输的基础研究提供基准数据集,也是为了学习该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响进行评估,被认为值得支持审查标准。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Atmospheric aerosol diagnostics with UAV-based holographic imaging and computer vision
利用基于无人机的全息成像和计算机视觉进行大气气溶胶诊断
- DOI:10.1109/lra.2023.3293991
- 发表时间:2023
- 期刊:
- 影响因子:5.2
- 作者:Bristow, Nathaniel R.;Pardoe, Nikolas;Hong, Jiarong
- 通讯作者:Hong, Jiarong
Imaging-based 3D particle tracking system for field characterization of particle dynamics in atmospheric flows
- DOI:10.1007/s00348-023-03619-6
- 发表时间:2022-10
- 期刊:
- 影响因子:2.4
- 作者:N. Bristow;Jiaqi Li;Peter Hartford;M. Guala;Jiarong Hong
- 通讯作者:N. Bristow;Jiaqi Li;Peter Hartford;M. Guala;Jiarong Hong
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jiarong Hong其他文献
Experimental investigation of turbulent flow over live mussels
活贝湍流的实验研究
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:2.2
- 作者:
S. S. Kumar;J. Kozarek;D. Hornbach;M. Hondzo;Jiarong Hong - 通讯作者:
Jiarong Hong
A new attribute-based learning algorithm GS and a comparison with existing algorithms
- DOI:
10.1007/bf02943537 - 发表时间:
1989-07-01 - 期刊:
- 影响因子:1.300
- 作者:
Jiarong Hong;Carl Unrik - 通讯作者:
Carl Unrik
Experimental investigation of ventilated supercavitation with gas jet cavitator
气体射流空化器通风超空化实验研究
- DOI:
10.1063/1.5005549 - 发表时间:
2018-01 - 期刊:
- 影响因子:4.6
- 作者:
Yunhua Jiang;Siyao Shao;Jiarong Hong - 通讯作者:
Jiarong Hong
AECAM: An extension matrix algorithm on a cellular automata machine
- DOI:
10.1007/bf02946171 - 发表时间:
1992-01-01 - 期刊:
- 影响因子:1.300
- 作者:
Yihe Wang;Jiarong Hong;Vincenzo D'Andrea;Carl Uhrik - 通讯作者:
Carl Uhrik
Real-time Multiple-particle Tracking in Ultrasonic Spray Pyrolysis
- DOI:
10.1016/j.mfglet.2022.07.010 - 发表时间:
2022-09-01 - 期刊:
- 影响因子:
- 作者:
Cade Albert;Lin Liu;John Haug;Huixuan Wu;Ruichen He;Jiarong Hong - 通讯作者:
Jiarong Hong
Jiarong Hong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jiarong Hong', 18)}}的其他基金
PFI-TT: Inline Particle Monitoring in Sterile Liquid Filtration Systems via Holographic Imaging
PFI-TT:通过全息成像在无菌液体过滤系统中进行在线颗粒监测
- 批准号:
2141002 - 财政年份:2022
- 资助金额:
$ 101.65万 - 项目类别:
Standard Grant
CAREER:Tackling Fluid Dynamics at Full Scale for Wind Energy Applications
职业:全面解决风能应用的流体动力学问题
- 批准号:
1454259 - 财政年份:2015
- 资助金额:
$ 101.65万 - 项目类别:
Standard Grant
相似国自然基金
水稻边界发育缺陷突变体abnormal boundary development(abd)的基因克隆与功能分析
- 批准号:32070202
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
相似海外基金
Grand Opera in 19th Century Paris: From the Formation of Genre to its Transnational Development
19世纪巴黎大歌剧院:从流派的形成到跨国发展
- 批准号:
20K00161 - 财政年份:2020
- 资助金额:
$ 101.65万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development and assessment of mobile geo-referenced games for geoscience education using the Grand Canyon as a virtual laboratory
使用大峡谷作为虚拟实验室开发和评估用于地球科学教育的移动地理参考游戏
- 批准号:
1245948 - 财政年份:2013
- 资助金额:
$ 101.65万 - 项目类别:
Standard Grant
Study on development of Grand Design of moral education in high school
高中德育大设计的发展研究
- 批准号:
25590270 - 财政年份:2013
- 资助金额:
$ 101.65万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Conference: Grand Challenges of Proteomic, Technologies, Resource Development and Applications; NIST Headquarters; Gaithersburg MD; February 2011
会议:蛋白质组学、技术、资源开发与应用的重大挑战;
- 批准号:
1127040 - 财政年份:2011
- 资助金额:
$ 101.65万 - 项目类别:
Interagency Agreement
Joint EPSRC/NSF Workshop on Software Development for Grand Challenges in the Chemical Sciences
EPSRC/NSF 化学科学重大挑战软件开发联合研讨会
- 批准号:
1142022 - 财政年份:2011
- 资助金额:
$ 101.65万 - 项目类别:
Standard Grant
Collaborative Research: ABI Development: RUI: From Data to Knowledge in Grand Challenge Environmental Science Research: VISTAS
合作研究:ABI 开发:RUI:大挑战中从数据到知识环境科学研究:VISTAS
- 批准号:
1062566 - 财政年份:2011
- 资助金额:
$ 101.65万 - 项目类别:
Continuing Grant
Development of a new simulation technique for the grand-canonical Monte Carlo method for an electrolyte solution.
开发电解质溶液的大正则蒙特卡罗方法的新模拟技术。
- 批准号:
19740351 - 财政年份:2007
- 资助金额:
$ 101.65万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Connectionist and Dynamic Systems Approaches to Development: On the Cusp of a New Grand Theory or Still Too Distributed?
联结主义和动态系统的发展方法:处于新的宏大理论的风口浪尖还是仍然过于分散?
- 批准号:
0446800 - 财政年份:2005
- 资助金额:
$ 101.65万 - 项目类别:
Standard Grant
Development of the Next Generation Megabar High-Pressure Cells: A COMPRES Grand Challenge
下一代 Megabar 高压单元的开发:COMRES 的巨大挑战
- 批准号:
0135626 - 财政年份:2002
- 资助金额:
$ 101.65万 - 项目类别:
Continuing Grant
Project for development of in vivo rat model internal 131-iodine exposure in thyroid grand
甲状腺内 131 碘暴露体内大鼠模型开发项目
- 批准号:
09558072 - 财政年份:1997
- 资助金额:
$ 101.65万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




