CC*Compute: From classroom to the lab: NMSU responds to the changing HPC landscape in New Mexico
CC*Compute:从课堂到实验室:NMSU 应对新墨西哥州不断变化的 HPC 格局
基本信息
- 批准号:2019000
- 负责人:
- 金额:$ 39.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
New Mexico State University (NMSU), a Minority-Serving Institution and Hispanic-Serving Institution, recognizes the vital need for universal access to a high performance computing (HPC) facility. Increasing the computational resources at NMSU, including storage, supports NMSU’s high research need, instructors interested in incorporating HPC into their classroom activities, and state-wide collaborations with faculty who are excited to have a supportive HPC team to assist their classrooms. New Mexico as a state has a high need for personnel experienced with HPC use, but lacks resources dedicated to student learning. By utilizing existing relationships between NMSU and other NM-based universities, the new resources increase HPC-based classroom activities around the state through a dedicated queue. Students trained in HPC use are in high demand both in industry and academia, providing our students with new opportunities. Much of the research performed on the HPC is either unfunded or funded through smaller grants that cannot purchase dedicated HPC resources and many users start on their HPC journey without the basic knowledge of Unix or how to use an HPC. Time on regional and national super clusters is valuable and not a good learning environment for those who are beginning their venture into computing-intensive science. With extensive collaborations across institutions and already having streamlined NMSU-affiliated user on-boarding and account creation, NMSU is key in increasing HPC knowledge across the entire state.This activity expands the existing HPC resources at NMSU by roughly 30% through the acquisition of 10 compute nodes each with 36 CPU cores, at least 256 GB of RAM and 960 GB of local storage for a total of 360 cores, two GPU nodes similar to the compute nodes but with dual Tesla V100 GPUs, 600 TB of network connected storage, and Infiniband interconnect hardware. The cluster supports both research and educational activities in a range of fields from biology and environmental sciences to physics, chemistry, and material science.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
新墨西哥州州立大学(NMSU),少数民族服务机构和西班牙裔服务机构,认识到普及高性能计算(HPC)设施的迫切需要。 增加在NMSU的计算资源,包括存储,支持NMSU的高研究需求,教师有兴趣将HPC纳入他们的课堂活动,并与教师谁很高兴有一个支持HPC团队,以协助他们的课堂全州范围内的合作。 新墨西哥州作为一个州,对具有HPC使用经验的人员需求很高,但缺乏专门用于学生学习的资源。 通过利用NMSU和其他NM大学之间的现有关系,新资源通过专用队列增加了全州基于HPC的课堂活动。 受过HPC使用培训的学生在工业界和学术界都有很高的需求,为我们的学生提供了新的机会。 在HPC上进行的大部分研究要么没有资金支持,要么通过无法购买专用HPC资源的小额赠款资助,许多用户在没有Unix或如何使用HPC的基本知识的情况下开始了他们的HPC之旅。 在区域和国家超级集群上的时间是宝贵的,对于那些开始冒险进入计算密集型科学的人来说,这不是一个好的学习环境。 通过跨机构的广泛合作,以及已经简化的NMSU附属用户注册和帐户创建,NMSU是在整个州增加HPC知识的关键。这项活动通过收购10个计算节点,每个节点有36个CPU内核,将NMSU现有的HPC资源扩展了大约30%,至少256 GB的RAM和960 GB的本地存储,总共360个核心,两个GPU节点类似于计算节点,但具有双Tesla V100 GPU,600 TB的网络连接存储和Infiniband互连硬件。该项目组支持从生物学和环境科学到物理学、化学和材料科学等一系列领域的研究和教育活动。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Diana Dugas其他文献
Diana Dugas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Diana Dugas', 18)}}的其他基金
CyberTraining: CDL: Cyber Infrastructure Training and Mentoring (CI-TraM)
网络培训:CDL:网络基础设施培训和指导 (CI-TraM)
- 批准号:
1730653 - 财政年份:2017
- 资助金额:
$ 39.99万 - 项目类别:
Standard Grant
相似海外基金
CC* Campus Compute: UTEP Cyberinfrastructure for Scientific and Machine Learning Applications
CC* 校园计算:用于科学和机器学习应用的 UTEP 网络基础设施
- 批准号:
2346717 - 财政年份:2024
- 资助金额:
$ 39.99万 - 项目类别:
Standard Grant
SHF: Small: Redesigning the Memory System in the Era of Compute Express Link
SHF:小型:重新设计 Compute Express Link 时代的内存系统
- 批准号:
2333049 - 财政年份:2024
- 资助金额:
$ 39.99万 - 项目类别:
Standard Grant
MYRTUS: Multi-layer 360° dYnamic orchestrion and interopeRable design environmenT for compute-continUum Systems
MYRTUS:用于连续计算系统的多层 360° 动态编排和可互操作设计环境
- 批准号:
10087666 - 财政年份:2024
- 资助金额:
$ 39.99万 - 项目类别:
EU-Funded
CC* Campus Compute: Interdisciplinary GPU-Enabled Compute
CC* 校园计算:支持 GPU 的跨学科计算
- 批准号:
2346343 - 财政年份:2024
- 资助金额:
$ 39.99万 - 项目类别:
Standard Grant
CC* Campus Compute: Building a Computational Cluster for Scientific Discovery
CC* 校园计算:构建科学发现计算集群
- 批准号:
2346673 - 财政年份:2024
- 资助金额:
$ 39.99万 - 项目类别:
Standard Grant
CAREER: Reinventing Computer Vision through Bio-inspired Retinomorphic Vision Sensors, Corticomorphic Compute-In-Memory Processors and Event-based Algorithms
职业:通过仿生视网膜形态视觉传感器、皮质形态内存计算处理器和基于事件的算法重塑计算机视觉
- 批准号:
2338171 - 财政年份:2024
- 资助金额:
$ 39.99万 - 项目类别:
Continuing Grant
Equipment: CC* Campus Compute: A High-Performance Computing System for Research and Education in Arkansas
设备:CC* 校园计算:用于阿肯色州研究和教育的高性能计算系统
- 批准号:
2346752 - 财政年份:2024
- 资助金额:
$ 39.99万 - 项目类别:
Standard Grant
Research Infrastructure: CC* Campus Compute: Lawrence 2.0: Advancing Multi-Disciplinary Research and Education in South Dakota
研究基础设施:CC* 校园计算:Lawrence 2.0:推进南达科他州的多学科研究和教育
- 批准号:
2346643 - 财政年份:2024
- 资助金额:
$ 39.99万 - 项目类别:
Standard Grant
Collaborative Research: FET: Medium:Compact and Energy-Efficient Compute-in-Memory Accelerator for Deep Learning Leveraging Ferroelectric Vertical NAND Memory
合作研究:FET:中型:紧凑且节能的内存计算加速器,用于利用铁电垂直 NAND 内存进行深度学习
- 批准号:
2312886 - 财政年份:2023
- 资助金额:
$ 39.99万 - 项目类别:
Standard Grant
Collaborative Research: FET: Medium:Compact and Energy-Efficient Compute-in-Memory Accelerator for Deep Learning Leveraging Ferroelectric Vertical NAND Memory
合作研究:FET:中型:紧凑且节能的内存计算加速器,用于利用铁电垂直 NAND 内存进行深度学习
- 批准号:
2312884 - 财政年份:2023
- 资助金额:
$ 39.99万 - 项目类别:
Standard Grant














{{item.name}}会员




