SBIR Phase I: Automated Learning of Vehicle Energy Performance Models
SBIR 第一阶段:车辆能源性能模型的自动学习
基本信息
- 批准号:2019458
- 负责人:
- 金额:$ 25.54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2021-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This Small Business Innovation Research (SBIR) Phase I project will research an internet-of-things (IoT) platform to automatically learn vehicle energy performance models (VEPMs). VEPMs are used to predict driving range and battery state of health in electric vehicles (EVs) on a per-vehicle, per-driver, per-route basis, and 8-10 times more accurately than today. It is estimated that over $150 billion will be invested in the electric vehicle ecosystem over the next decade. A significant obstacle hindering rapid EV adoption is range anxiety representing user concerns over the achievable distance and where/ when to charge the EV. Range anxiety can be alleviated by providing EV drivers with contextual intelligence on their realistic driving range and recommended charging strategy, based on travel plans, driving behavior and vehicle model. Increasing EV adoption by consumers reduces transportation system fossil fuel consumption and emissions. As part of this effort, a cloud application programming interface (API) will deliver predictions based on the learned VEPMs; this will also enable energy-aware applications such as eco-routing, eco-cruising, eco-powertrain control, and planning of charging stops, among others, both at the individual vehicle and at the fleet level. Energy-aware applications can increase the overall energy efficiency of electrified fleets.The intellectual merit of this project is to advance an IoT architecture to automatically learn VEPMs from real-time vehicle sensor telemetry and other data, such as maps and route topography. The plan is divided into three integrated goals: (1) the building of an IoT framework leveraging physics principles to capture the vehicle motion and powertrain efficiencies, as well as data-driven approaches to capture human factors, and uncertainty in maps and measurements, (2) efforts to address scalability and generalization of the learning in geographical areas with limited data and reduced expert supervision, and (3) the experimental validation of the platform on real-world driving data collected in a set of representative conditions. Statistical learning theory will be merged with predictive control theory using a mix of physics-based and data-driven models in the learning process. Scalability and accuracy will be attained by updating models in real-time using data and sharing models among vehicles of the same manufacturer.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该小型企业创新研究(SBIR)第一阶段项目将研究物联网(IoT)平台,以自动学习车辆能源性能模型(VEPMs)。VEPM用于预测电动汽车(EV)的续驶里程和电池健康状态,以每辆车、每名驾驶员、每条路线为基础,比现在准确8-10倍。据估计,未来十年将有超过1500亿美元投资于电动汽车生态系统。阻碍电动汽车快速普及的一个重要障碍是里程焦虑,这代表了用户对可达到的距离以及何时/何地为电动汽车充电的担忧。 根据出行计划、驾驶行为和车型,为电动汽车驾驶员提供关于其实际行驶里程和推荐充电策略的上下文智能,可以缓解里程焦虑。消费者越来越多地采用电动汽车,减少了运输系统的化石燃料消耗和排放。作为这项工作的一部分,云应用程序编程接口(API)将根据学习到的VEPM提供预测;这也将实现能源感知应用,例如生态路由,生态巡航,生态动力系统控制和充电站规划等,无论是在单个车辆还是在车队级别。能源感知应用可以提高电气化车队的整体能源效率。该项目的智力价值在于推进物联网架构,以自动从实时车辆传感器遥测和其他数据(如地图和路线地形)中学习VEPM。该计划分为三个综合目标:(1)构建物联网框架,利用物理原理来捕获车辆运动和动力传动系统效率,以及数据驱动方法来捕获人为因素以及地图和测量中的不确定性,(2)努力解决数据有限和专家监督减少的地理区域中学习的可扩展性和泛化,以及(3)在一组代表性条件下收集的真实驾驶数据上对平台进行实验验证。统计学习理论将与预测控制理论合并,在学习过程中使用基于物理和数据驱动的模型。该奖项反映了NSF的法定使命,通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jacopo Guanetti其他文献
Robust Eco Adaptive Cruise Control for Cooperative Vehicles
适用于协作车辆的稳健生态自适应巡航控制
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Yeojun Kim;Jacopo Guanetti;F. Borrelli - 通讯作者:
F. Borrelli
Modeling and Experimental Validation of PbA battery - Supercapacitor Energy Storage System
PbA电池-超级电容器储能系统的建模和实验验证
- DOI:
10.3182/20130904-4-jp-2042.00093 - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Simone Fiorenti;Jacopo Guanetti;S. Onori;Y. Guezennec;Nullo Madella;A. Saletti;Stefano Bovo - 通讯作者:
Stefano Bovo
Balancing Safety and Traffic Throughput in Cooperative Vehicle Platooning
在协作车辆编队中平衡安全性和交通吞吐量
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Stanley W. Smith;Yeojun Kim;Jacopo Guanetti;A. Kurzhanskiy;M. Arcak;F. Borrelli - 通讯作者:
F. Borrelli
Jacopo Guanetti的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jacopo Guanetti', 18)}}的其他基金
SBIR Phase II: Improving fleet operational metrics through service optimization with automated learning of vehicle energy performance models for zero-emission public transport
SBIR 第二阶段:通过服务优化和自动学习零排放公共交通的车辆能源性能模型来改善车队运营指标
- 批准号:
2220811 - 财政年份:2023
- 资助金额:
$ 25.54万 - 项目类别:
Cooperative Agreement
相似国自然基金
Baryogenesis, Dark Matter and Nanohertz Gravitational Waves from a Dark
Supercooled Phase Transition
- 批准号:24ZR1429700
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
ATLAS实验探测器Phase 2升级
- 批准号:11961141014
- 批准年份:2019
- 资助金额:3350 万元
- 项目类别:国际(地区)合作与交流项目
地幔含水相Phase E的温度压力稳定区域与晶体结构研究
- 批准号:41802035
- 批准年份:2018
- 资助金额:12.0 万元
- 项目类别:青年科学基金项目
基于数字增强干涉的Phase-OTDR高灵敏度定量测量技术研究
- 批准号:61675216
- 批准年份:2016
- 资助金额:60.0 万元
- 项目类别:面上项目
基于Phase-type分布的多状态系统可靠性模型研究
- 批准号:71501183
- 批准年份:2015
- 资助金额:17.4 万元
- 项目类别:青年科学基金项目
纳米(I-Phase+α-Mg)准共晶的临界半固态形成条件及生长机制
- 批准号:51201142
- 批准年份:2012
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
连续Phase-Type分布数据拟合方法及其应用研究
- 批准号:11101428
- 批准年份:2011
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
D-Phase准晶体的电子行为各向异性的研究
- 批准号:19374069
- 批准年份:1993
- 资助金额:6.4 万元
- 项目类别:面上项目
相似海外基金
SBIR Phase I: Trajectory Optimizations and Learned Foliage Manipulation to Accelerate Throughput in Automated Strawberry Harvesting
SBIR 第一阶段:轨迹优化和学习叶子操纵,以提高自动化草莓收获的吞吐量
- 批准号:
2322402 - 财政年份:2023
- 资助金额:
$ 25.54万 - 项目类别:
Standard Grant
SBIR Phase I: Automated One-Hour Testing for Bacteremia and Antibiotic Sensitivity
SBIR 第一阶段:一小时自动检测菌血症和抗生素敏感性
- 批准号:
2304069 - 财政年份:2023
- 资助金额:
$ 25.54万 - 项目类别:
Standard Grant
SBIR Phase II: Real-time computer automated identification and quantification of insects entering the SolaRid insect control device (ICD)
SBIR 第二阶段:实时计算机自动识别和量化进入 SolaRid 昆虫控制装置 (ICD) 的昆虫
- 批准号:
2247237 - 财政年份:2023
- 资助金额:
$ 25.54万 - 项目类别:
Cooperative Agreement
PA22176, SBIR Phase I, Novel Automated Screening Approach for Identifying Fall Risk
PA22176,SBIR 第一阶段,用于识别跌倒风险的新型自动筛查方法
- 批准号:
10697534 - 财政年份:2023
- 资助金额:
$ 25.54万 - 项目类别:
SBIR Phase I: Automated Detection of Confounds and Inappropriate Context to Promote Prosocial Learning and Cognition
SBIR 第一阶段:自动检测混淆和不适当的背景,以促进亲社会学习和认知
- 批准号:
2304423 - 财政年份:2023
- 资助金额:
$ 25.54万 - 项目类别:
Standard Grant
SBIR Phase I: Developing an Automated Outbound Packing System
SBIR 第一阶段:开发自动化出库包装系统
- 批准号:
2223089 - 财政年份:2023
- 资助金额:
$ 25.54万 - 项目类别:
Standard Grant
SBIR Phase II: Improving fleet operational metrics through service optimization with automated learning of vehicle energy performance models for zero-emission public transport
SBIR 第二阶段:通过服务优化和自动学习零排放公共交通的车辆能源性能模型来改善车队运营指标
- 批准号:
2220811 - 财政年份:2023
- 资助金额:
$ 25.54万 - 项目类别:
Cooperative Agreement
SBIR Phase I: Automated Gram Stain Interpretation Via Digital Holographic Microscopy
SBIR 第一阶段:通过数字全息显微镜进行自动革兰氏染色解读
- 批准号:
2321453 - 财政年份:2023
- 资助金额:
$ 25.54万 - 项目类别:
Standard Grant
SBIR Phase II: Automated Perception for Robotic Chopsticks Manipulating Small and Large Objects in Constrained Spaces
SBIR 第二阶段:机器人筷子在受限空间中操纵小型和大型物体的自动感知
- 批准号:
2321919 - 财政年份:2023
- 资助金额:
$ 25.54万 - 项目类别:
Cooperative Agreement
SBIR Phase I: Artificial Intelligence for Automated Custom Avatar Creation
SBIR 第一阶段:用于自动创建自定义头像的人工智能
- 批准号:
2334192 - 财政年份:2023
- 资助金额:
$ 25.54万 - 项目类别:
Standard Grant