STC: Center for Learning the Earth with Artificial Intelligence and Physics (LEAP)

STC:利用人工智能和物理学习地球中心 (LEAP)

基本信息

  • 批准号:
    2019625
  • 负责人:
  • 金额:
    $ 2500万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Cooperative Agreement
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2026-09-30
  • 项目状态:
    未结题

项目摘要

Projections of future climate change from Earth system models (ESMs) play a critical role in addressing the threats posed by climate change, especially given the need to plan for conditions that have no historical precedent. But ESM projections have large uncertainties which limit their usefulness for decision support, and the most worrisome forms of climate change are often the ones with the greatest uncertainties. Such uncertainty is not unexpected considering the many processes, from cloud formation to carbon cycling to ocean turbulence, that affect the climatic response to anthropogenic forcing. These processes must be represented in ESMs but there is no easy way to simulate them. Some, like ocean turbulence, are hard simply because they involve spatial scales too small to be simulated at the resolutions accessible to global models. Others, like the exchange of water and carbon dioxide through a forest canopy, are crudely simulated due to incomplete scientific understanding.Processes which cannot be explicitly represented in ESMs are instead incorporated through “parameterizations”, which roughly express their effects on the resolved model state. Such parameterizations are based on first-principles theory but they also involve crude approximations and must be “tuned” by assigning numerical values to parameters which control their behavior. The parameters typically lack observational and theoretical constraints, and their values are manually adjusted to improve the simulation of present-day climate. Even after tuning models still exhibit substantial bias, and the complexity and computational expense of ESMs has increased to the point where traditional hands-on tuning is becoming impractical.Artificial Intelligence (AI), particularly in the form of Machine Learning (ML), offers a new way forward for improving parameterizations and reducing uncertainty in climate projections. AI is a compelling complement to traditional parameterization development, which begins with theory and physical principles and uses observational data somewhat sparingly. In contrast, the methods of AI are data driven and thus a perfect match for the explosive growth in earth system data that has occurred in recent years. This includes data from satellites, in situ networks, and field campaigns. For some processes, particularly cloud formation and ocean turbulence, small-scale process models have become sufficiently realistic that they can provide surrogate observations to drive AI-based methods.The Center for Learning the Earth with Artificial Intelligence and Physics (LEAP) applies the power of AI to the wealth of available earth system data to overcome the limitations of traditional parameterization development and tuning, thus creating a new pathway to better ESMs and better guidance to decision-makers. The AI methods are novel in that they build physical constraints such as conservation laws into data-driven algorithms. AI methods are also used to find more discriminating ways to use observational data to evaluate model performance. LEAP works with the developers of the Community Earth System Model to ensure that its advances are made available to the worldwide community of climate researchers.In order to promote effective climate adaptation, LEAP fosters equitable training of the next generation of diverse learners across multiple scales by supporting post docs, graduate students, high-school students, parents, and teachers. Furthermore, the Center supports bidirectional knowledge transfer with the public and private sectors to develop tailored and relevant climate-related information for stakeholders so that they can better adapt to climate change.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
地球系统模型(ESM)对未来气候变化的预测在应对气候变化带来的威胁方面发挥着至关重要的作用,特别是考虑到需要为历史上没有先例的条件进行规划。 但ESM预测具有很大的不确定性,这限制了它们对决策支持的有用性,而最令人担忧的气候变化形式往往是不确定性最大的形式。 考虑到从云的形成到碳循环再到海洋湍流等影响气候对人为强迫的反应的许多过程,这种不确定性并不意外。 这些过程必须在ESM中表示,但没有简单的方法来模拟它们。有些,比如海洋湍流,很难,仅仅是因为它们涉及的空间尺度太小,无法以全球模型的分辨率进行模拟。由于科学认识的不完整,其他的过程,如水和二氧化碳在林冠中的交换,只能粗略地模拟,而不能在ESM中明确表示的过程则通过“参数化”来表示,这些参数化可以粗略地表示它们对解析模型状态的影响。 这种参数化是基于第一原理理论,但它们也涉及粗糙的近似,必须通过分配数值的参数,控制他们的行为进行“调整”。 这些参数通常缺乏观测和理论上的限制,它们的值是人工调整的,以改善对当今气候的模拟。 即使在调整之后,模型仍然存在很大的偏差,并且ESM的复杂性和计算费用已经增加到传统的手动调整变得不切实际的程度。人工智能(AI),特别是机器学习(ML)的形式,为改进参数化和减少气候预测的不确定性提供了一种新的方法。 人工智能是传统参数化开发的一个引人注目的补充,传统参数化开发从理论和物理原理开始,并在一定程度上节省使用观测数据。 相比之下,人工智能的方法是数据驱动的,因此非常适合近年来地球系统数据的爆炸性增长。 这包括来自卫星、现场网络和实地活动的数据。 对于某些过程,特别是云的形成和海洋湍流,小尺度过程模型已经变得足够逼真,它们可以提供替代观测来驱动基于人工智能的方法。人工智能和物理学学习地球中心(LEAP)将人工智能的力量应用于丰富的可用地球系统数据,以克服传统参数化开发和调整的局限性,从而为更好的紧急保障措施和更好地指导决策者开辟了一条新的途径。人工智能方法是新颖的,因为它们将守恒定律等物理约束构建到数据驱动的算法中。 人工智能方法也被用来寻找更有区别的方法来使用观测数据来评估模型性能。LEAP与社区地球系统模型的开发者合作,确保其进展成果能够提供给全球气候研究者社区。为了促进有效的气候适应,LEAP通过支持博士后、研究生、高中生、家长和教师,在多个尺度上促进对下一代多样化学习者的公平培训。此外,该中心还支持与公共和私营部门的双向知识转移,为利益相关者开发量身定制的相关气候相关信息,以便他们能够更好地适应气候变化。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(17)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Development of a Deep Learning Emulator for a Distributed Groundwater–Surface Water Model: ParFlow-ML
  • DOI:
    10.3390/w13233393
  • 发表时间:
    2021-12
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Hoang Tran;E. Leonarduzzi;Luis De la Fuente;R. B. Hull;Vineet Bansal;Calla Chennault;P. Gentine;Peter Melchior;L. Condon;R. Maxwell
  • 通讯作者:
    Hoang Tran;E. Leonarduzzi;Luis De la Fuente;R. B. Hull;Vineet Bansal;Calla Chennault;P. Gentine;Peter Melchior;L. Condon;R. Maxwell
Deep Learning for Subgrid‐Scale Turbulence Modeling in Large‐Eddy Simulations of the Convective Atmospheric Boundary Layer
  • DOI:
    10.1029/2021ms002847
  • 发表时间:
    2022-05
  • 期刊:
  • 影响因子:
    6.8
  • 作者:
    Yu Cheng;M. Giometto;Pit Kauffmann;Ling Lin;Chengyu Cao;Cody Zupnick;Harold Li;Qi Li;Y. Huang;R. Abernathey;P. Gentine
  • 通讯作者:
    Yu Cheng;M. Giometto;Pit Kauffmann;Ling Lin;Chengyu Cao;Cody Zupnick;Harold Li;Qi Li;Y. Huang;R. Abernathey;P. Gentine
Variability in the Global Ocean Carbon Sink From 1959 to 2020 by Correcting Models With Observations
  • DOI:
    10.1029/2022gl098632
  • 发表时间:
    2022-07-28
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Bennington, Val;Gloege, Lucas;McKinley, Galen A.
  • 通讯作者:
    McKinley, Galen A.
Correcting Systematic and State‐Dependent Errors in the NOAA FV3‐GFS Using Neural Networks
使用神经网络纠正 NOAA FV3–GFS 中的系统性和状态相关错误
  • DOI:
    10.1029/2022ms003309
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    6.8
  • 作者:
    Chen, Tse‐Chun;Penny, Stephen G.;Whitaker, Jeffrey S.;Frolov, Sergey;Pincus, Robert;Tulich, Stefan
  • 通讯作者:
    Tulich, Stefan
Explicit Physical Knowledge in Machine Learning for Ocean Carbon Flux Reconstruction: The pCO 2 ‐Residual Method
海洋碳通量重建机器学习中的显式物理知识:pCO 2 – 残差法
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Pierre Gentine其他文献

Two for one: Partitioning COsub2/sub fluxes and understanding the relationship between solar-induced chlorophyll fluorescence and gross primary productivity using machine learning
二合一:利用机器学习划分二氧化碳通量并理解太阳诱导叶绿素荧光与总初级生产力之间的关系
  • DOI:
    10.1016/j.agrformet.2022.108980
  • 发表时间:
    2022-06-15
  • 期刊:
  • 影响因子:
    5.700
  • 作者:
    Weiwei Zhan;Xi Yang;Youngryel Ryu;Benjamin Dechant;Yu Huang;Yves Goulas;Minseok Kang;Pierre Gentine
  • 通讯作者:
    Pierre Gentine
Estimating evapotranspiration using remotely sensed solar-induced fluorescence measurements
  • DOI:
    10.1016/j.agrformet.2021.108800
  • 发表时间:
    2022-03-01
  • 期刊:
  • 影响因子:
    5.700
  • 作者:
    Kai Zhou;Quan Zhang;Lihua Xiong;Pierre Gentine
  • 通讯作者:
    Pierre Gentine
Emissions rebound from the COVID-19 pandemic
  • DOI:
    10.1038/s41558-022-01332-6
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    30.7
  • 作者:
    Steven J. Davis;Zhu Liu;Zhu Deng;Biqing Zhu;Piyu Ke;Taochun Sun;Rui Guo;Chaopeng Hong;Bo Zheng;Yilong Wang;Olivier Boucher;Pierre Gentine;Philippe Ciais
  • 通讯作者:
    Philippe Ciais
Shallow groundwater inhibits soil respiration and favors carbon uptake in a wet alpine meadow ecosystem
浅层地下水抑制土壤呼吸并有利于潮湿高山草甸生态系统的碳吸收
  • DOI:
    10.22541/au.158880248.84807120
  • 发表时间:
    2020-05
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    Shaobo Sun;Tao Che;Pierre Gentine;Qiting Chen;Zhaoliang Song
  • 通讯作者:
    Zhaoliang Song
GEOSIF: A continental-scale sub-daily reconstructed solar-induced fluorescence derived from OCO-3 and GK-2A over Eastern Asia and Oceania
GEOSIF:源自东亚和大洋洲 OCO-3 和 GK-2A 的大陆尺度次日重建太阳诱导荧光
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    13.5
  • 作者:
    Sungchan Jeong;Youngryel Ryu;Xing Li;Benjamin Dechant;Jiangong Liu;Juwon Kong;Wonseok Choi;Jianing Fang;Xu Lian;Pierre Gentine
  • 通讯作者:
    Pierre Gentine

Pierre Gentine的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Pierre Gentine', 18)}}的其他基金

Collaborative Research: HDR Elements: Software for a new machine learning based parameterization of moist convection for improved climate and weather prediction using deep learning
合作研究:HDR Elements:基于新机器学习的湿对流参数化软件,利用深度学习改进气候和天气预报
  • 批准号:
    1835769
  • 财政年份:
    2018
  • 资助金额:
    $ 2500万
  • 项目类别:
    Standard Grant
Collaborative Research: Role of Cloud Albedo and Land-Atmosphere Interactions on Continental Tropical Climates
合作研究:云反照率和陆地-大气相互作用对大陆热带气候的作用
  • 批准号:
    1734156
  • 财政年份:
    2017
  • 资助金额:
    $ 2500万
  • 项目类别:
    Standard Grant
Collaborative Research: Dynamics of Unsaturated Downdrafts, Cold Pools, and Their Roles in Convective Initiation and Organization
合作研究:不饱和下降气流、冷池的动力学及其在对流引发和组织中的作用
  • 批准号:
    1649770
  • 财政年份:
    2017
  • 资助金额:
    $ 2500万
  • 项目类别:
    Continuing Grant
CAREER: Departure from Monin-Obukhov Similarity Theory (MOST) using high-resolution turbulence models
职业生涯:使用高分辨率湍流模型偏离 Monin-Obukhov 相似理论 (MOST)
  • 批准号:
    1552304
  • 财政年份:
    2016
  • 资助金额:
    $ 2500万
  • 项目类别:
    Continuing Grant
Summer School in Land-atmosphere Interactions
陆地-大气相互作用暑期学校
  • 批准号:
    1522174
  • 财政年份:
    2015
  • 资助金额:
    $ 2500万
  • 项目类别:
    Standard Grant
Collaborative Research: Quantifying the impacts of atmospheric and land surface heterogeneity and scale on soil moisture-precipitation feedbacks
合作研究:量化大气和地表异质性和规模对土壤湿度-降水反馈的影响
  • 批准号:
    1035843
  • 财政年份:
    2011
  • 资助金额:
    $ 2500万
  • 项目类别:
    Standard Grant

相似国自然基金

金刚石NV center与磁子晶体强耦合的混合量子系统研究
  • 批准号:
    12375018
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
金刚石SiV center与声子晶体强耦合的新型量子体系研究
  • 批准号:
    92065105
  • 批准年份:
    2020
  • 资助金额:
    80.0 万元
  • 项目类别:
    重大研究计划
金刚石NV center与磁介质超晶格表面声子极化激元强耦合的新型量子器件研究
  • 批准号:
    11774285
  • 批准年份:
    2017
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目
室温下金刚石晶体内N-V center单电子自旋量子比特研究
  • 批准号:
    10974251
  • 批准年份:
    2009
  • 资助金额:
    40.0 万元
  • 项目类别:
    面上项目

相似海外基金

IUCRC Phase II Georgia Institute of Technology: Center for Advanced Electronics through Machine Learning [CAEML]
IUCRC 第二期佐治亚理工学院:机器学习先进电子学中心 [CAEML]
  • 批准号:
    2345055
  • 财政年份:
    2023
  • 资助金额:
    $ 2500万
  • 项目类别:
    Continuing Grant
Western Mining Safety & Health Training Resource Center: Facilitating Research to Practice through Learning Laboratories
西部矿业安全
  • 批准号:
    10765245
  • 财政年份:
    2023
  • 资助金额:
    $ 2500万
  • 项目类别:
The CU Learning Disabilities (LD) Leadership Core: Scaffolding a Growing Center of Environmental LD Research and The Next generation of LD Scholars
CU 学习障碍 (LD) 领导核心:搭建不断发展的环境 LD 研究中心和下一代 LD 学者
  • 批准号:
    10533149
  • 财政年份:
    2022
  • 资助金额:
    $ 2500万
  • 项目类别:
Center: Track 4: Learning to Serve: A Center for Equity in Engineering at an Emerging MSI
中心:轨道 4:学习服务:新兴 MSI 的工程公平中心
  • 批准号:
    2217741
  • 财政年份:
    2022
  • 资助金额:
    $ 2500万
  • 项目类别:
    Standard Grant
Center for Immersive Learning and Digital Innovation: A Patient Safety Learning Lab advancing patient safety through design, systems engineering, and health services research
沉浸式学习和数字创新中心:患者安全学习实验室通过设计、系统工程和健康服务研究促进患者安全
  • 批准号:
    10705739
  • 财政年份:
    2022
  • 资助金额:
    $ 2500万
  • 项目类别:
Center for Immersive Learning and Digital Innovation: A Patient Safety Learning Lab advancing patient safety through design, systems engineering, and health services research
沉浸式学习和数字创新中心:患者安全学习实验室通过设计、系统工程和健康服务研究促进患者安全
  • 批准号:
    10555850
  • 财政年份:
    2022
  • 资助金额:
    $ 2500万
  • 项目类别:
Reimagining Equity: An Informal STEM Learning Equity Resource Center
重新构想公平:非正式的 STEM 学习公平资源中心
  • 批准号:
    2229061
  • 财政年份:
    2022
  • 资助金额:
    $ 2500万
  • 项目类别:
    Cooperative Agreement
IUCRC Phase II Georgia Institute of Technology: Center for Advanced Electronics through Machine Learning [CAEML]
IUCRC 第二期佐治亚理工学院:机器学习先进电子学中心 [CAEML]
  • 批准号:
    2137259
  • 财政年份:
    2022
  • 资助金额:
    $ 2500万
  • 项目类别:
    Continuing Grant
IUCRC Phase II University of Illinois Urbana Champaign: Center for Advanced Electronics through Machine Learning (CAEML)
IUCRC 第二阶段伊利诺伊大学香槟分校:机器学习先进电子学中心 (CAEML)
  • 批准号:
    2137288
  • 财政年份:
    2022
  • 资助金额:
    $ 2500万
  • 项目类别:
    Continuing Grant
IUCRC Phase II North Carolina State University: Center for Advanced Electronics through Machine Learning [CAEML]
IUCRC 第二期北卡罗来纳州立大学:机器学习先进电子学中心 [CAEML]
  • 批准号:
    2137283
  • 财政年份:
    2022
  • 资助金额:
    $ 2500万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了