Collaborative Research: Use of Wearable Sensors to Track Muscle-Tendon Loading during Exosuit Assisted Locomotion

合作研究:使用可穿戴传感器跟踪外装辅助运动期间的肌肉肌腱负荷

基本信息

  • 批准号:
    2019621
  • 负责人:
  • 金额:
    $ 29.94万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Advances in exosuit technologies are enabling the use of powered assistance to enhance walking performance in healthy individuals and assist individuals who exhibit gait pathologies, e.g. individuals with stroke. Unlike rigid exoskeletons, exosuits are lightweight and use soft materials that provide a comfortable and unobtrusive fit with the body. A pack worn at the waist uses battery-powered motors to generate forces that are transmitted to the ankle and hip. In spite of demonstrated success in decreasing the energy needed to walk, it remains challenging to tune exosuit assistance patterns for individual users. Thus, the long-term goal of this work is to enable individualized assistance that can adapt in real time to a user’s unique gait patterns and to the environment. To do this, novel sensors, termed shear wave tensiometers, will be used to track adaptations in knee and ankle muscle loading that arise when assistance is provided by a powered ankle exosuit. Studies will be performed to determine how different exosuit assistance control patterns modulate internal muscle loading under varied walking conditions, including with and without exosuit assistance, with and without carrying a load (backpack) and walking in an outdoor/real-world environment (declines, inclines and variable walking speeds.) Theses studies will enhance the fundamental understanding of neuromuscular responses to exosuit assistance and thus enable human-in-the-loop implementations that adapt assistance based on the needs of an individual. Educational and outreach impact will be achieved by using fundamentals underlying the robotic, biomechanics and sensor technologies developed in this project as a platform for engaging K-12 students in STEM. Simplified versions of the exosuits and sensors will be incorporated into the annual engineering outreach event at the University of Wisconsin-Madison which reaches thousands of K-12 students and their teachers every year. Also, the Soft Robotics Toolkit hosted by Harvard will be used to create engaging content that describes human-machine interaction, biomechanics, physiology and gait.The goal of this project is to use novel tissue load sensors, termed shear wave tensiometers, to investigate biomechanical adaptations to exosuit assistance within and beyond the laboratory environment. Though current exosuit technologies have been shown to lower the metabolic cost of walking in healthy subjects and improve propulsion, ground clearance, and symmetry in stroke survivors, the extent of these benefits varies widely across subjects. The project builds on a new collaboration between the lab that invented the tensiometer method to directly gauge tendon loading by measuring the propagation speed of shear waves along the tendon’s axis (University of Wisconsin-Madison) and a lab that is recognized for leadership in developing the next generation of soft exosuits (Harvard.) The Research Plan is organized under three aims, with each aim being evaluated in 10 human subjects. The FIRST Aim is to develop and incorporate a wearable shear wave tensiometer into an ankle exosuit to continuously monitor Achilles tendon loading during prolonged treadmill walking trials. Ankle joint torque determined from tensiometer measurements will be compared to measurements based on motion capture. The result of this aim will be a validated wearable sensor for quantifying changes in tendon tissue loading induced by exosuit assistance. The SECOND Aim is to evaluate relationship between ankle exosuit assistance magnitude and change in muscle-tendon loading during walking with and without added mass. Results of this aim will provide novel insights into the relationship between exosuit assistance and biological soft tissue loads, with expectations that the tested variables (exosuit force, exosuit timing, and added mass) will have various effects on the user’s muscle-tendon load. The THIRD Aim is to evaluate the effect of ankle exosuit assistance on muscle-tendon loading while walking in an outdoor circuit that includes inclines, declines, comfortable speed and fast walking. Measurements include tendon loading with the mobile tensiometer, muscle kinematics with ultrasound, and biomechanics and suit data with suit IMUs and load cells. Results of this aim are expected to demonstrate that, similar to how a motion capture and force plate setup in a lab environment allows for estimating joint moments, the suit sensors and tensiometer will allow for evaluating joint kinematics and tendon kinetics in outdoor environments. Success of the project is expected to lead to a new design of exosuits with integrated tensiometer sensors, produce new understanding of biomechanics with exosuits, and potentially inform optimization of personalized wearable exoskeletons for clinical and/or aged populations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
外装技术的进步使动力辅助的使用能够增强健康人的行走能力,并帮助表现出步态病变的人,例如中风患者。与坚硬的外骨骼不同,外骨骼服重量轻,使用柔软的材料,提供舒适和不显眼的身体配合。一个系在腰上的背包利用电池驱动的马达产生的力量传递到脚踝和臀部。尽管在减少行走所需能量方面取得了成功,但为个人用户调整外骨骼辅助模式仍然具有挑战性。因此,这项工作的长期目标是使个性化的辅助能够实时适应用户独特的步态模式和环境。为了做到这一点,新的传感器,称为剪切波张力计,将用于跟踪膝盖和脚踝肌肉负荷的适应,当有动力脚踝外装提供帮助时。研究将确定不同的外骨骼辅助控制模式如何在不同的步行条件下调节内部肌肉负荷,包括带和不带外骨骼辅助,带和不带负载(背包)以及在室外/现实环境中行走(下降,倾斜和可变步行速度)。这些研究将增强对外骨骼辅助的神经肌肉反应的基本理解,从而使人在环路中实现基于个人需求的辅助。通过使用该项目开发的机器人、生物力学和传感器技术的基础知识,作为吸引K-12学生参与STEM的平台,将实现教育和推广影响。简化版的外装和传感器将被纳入威斯康星大学麦迪逊分校的年度工程推广活动中,该活动每年都会吸引数千名K-12学生和他们的老师。此外,由哈佛大学托管的软机器人工具包将用于创建描述人机交互、生物力学、生理学和步态的引人入胜的内容。这个项目的目标是使用新型的组织负载传感器,称为剪切波张力计,来研究生物力学适应在实验室环境内外的外骨骼辅助。虽然目前的外骨骼技术已被证明可以降低健康受试者行走的代谢成本,并改善中风幸存者的推进力、离地间隙和对称性,但这些益处的程度在不同受试者之间差异很大。该项目建立在实验室之间的新合作基础上,该实验室发明了通过测量剪切波沿肌腱轴的传播速度来直接测量肌腱载荷的张力计方法(威斯康星大学麦迪逊分校)和在开发下一代软外套方面被公认为领先的实验室(哈佛大学)。研究计划分为三个目标,每个目标在10个人类受试者中进行评估。第一个目标是开发一种可穿戴的剪切波张力计,并将其集成到脚踝外装中,以在长时间的跑步机行走试验中持续监测跟腱负荷。通过张力计测量确定的踝关节扭矩将与基于动作捕捉的测量结果进行比较。这一目标的结果将是一个经过验证的可穿戴传感器,用于量化由外骨骼辅助引起的肌腱组织负荷的变化。第二个目的是评估在负重和不负重的情况下行走时,踝关节外服辅助强度和肌肉肌腱负荷变化之间的关系。这一目标的结果将为外装辅助和生物软组织负荷之间的关系提供新的见解,并期望测试的变量(外装力、外装时间和增加的质量)将对用户的肌肉-肌腱负荷产生各种影响。第三个目标是评估踝外服辅助在包括倾斜、下降、舒适速度和快速步行在内的室外步行时对肌肉肌腱负荷的影响。测量包括使用移动张力计的肌腱载荷,使用超声波的肌肉运动学,以及使用套装imu和称重传感器的生物力学和套装数据。这一目标的结果预计将证明,类似于在实验室环境中设置运动捕捉和力板可以估计关节力矩的方式,宇航服传感器和张力计将允许评估室外环境中的关节运动学和肌腱动力学。该项目的成功预计将导致带有集成张力计传感器的外骨骼的新设计,产生对外骨骼生物力学的新理解,并可能为临床和/或老年人群的个性化可穿戴外骨骼提供优化信息。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Darryl Thelen其他文献

Ultrasound quantitative characterization of tendinopathy with shear wave elastography in an ex vivo porcine tendon model
  • DOI:
    10.1186/s41747-024-00542-1
  • 发表时间:
    2025-03-20
  • 期刊:
  • 影响因子:
    3.600
  • 作者:
    Quinn Steiner;Albert Wang;Laura Slane;Scott Hetzel;Ryan DeWall;Darryl Thelen;Kenneth Lee
  • 通讯作者:
    Kenneth Lee

Darryl Thelen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Darryl Thelen', 18)}}的其他基金

Collaborative Research: Multi-Domain Computational Framework for Simulating Musculoskeletal Systems
合作研究:模拟肌肉骨骼系统的多领域计算框架
  • 批准号:
    0966535
  • 财政年份:
    2010
  • 资助金额:
    $ 29.94万
  • 项目类别:
    Standard Grant
Enhancing Student Design Experiences by Integrating Computer-Aided Engineering into the Curriculum
通过将计算机辅助工程融入课程来增强学生的设计经验
  • 批准号:
    9751210
  • 财政年份:
    1997
  • 资助金额:
    $ 29.94万
  • 项目类别:
    Standard Grant
CAREER: Biomechanical Analyses of Balance Recovery During Falls in Young and Old Adults
职业:年轻人和老年人跌倒期间平衡恢复的生物力学分析
  • 批准号:
    9702275
  • 财政年份:
    1997
  • 资助金额:
    $ 29.94万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: NCS-FR: DEJA-VU: Design of Joint 3D Solid-State Learning Machines for Various Cognitive Use-Cases
合作研究:NCS-FR:DEJA-VU:针对各种认知用例的联合 3D 固态学习机设计
  • 批准号:
    2319619
  • 财政年份:
    2023
  • 资助金额:
    $ 29.94万
  • 项目类别:
    Continuing Grant
Collaborative Research: BoCP-Design US-Sao Paulo: Land use change, ecosystem resilience and zoonotic spillover risk
合作研究:BoCP-Design US-Sao Paulo:土地利用变化、生态系统恢复力和人畜共患病溢出风险
  • 批准号:
    2225023
  • 财政年份:
    2023
  • 资助金额:
    $ 29.94万
  • 项目类别:
    Standard Grant
Collaborative Research: BoCP-Design US-Sao Paulo: Land use change, ecosystem resilience and zoonotic spillover risk
合作研究:BoCP-Design US-Sao Paulo:土地利用变化、生态系统恢复力和人畜共患病溢出风险
  • 批准号:
    2225022
  • 财政年份:
    2023
  • 资助金额:
    $ 29.94万
  • 项目类别:
    Standard Grant
Collaborative Research: CAS-Climate: Linking Activities, Expenditures and Energy Use into an Integrated Systems Model to Understand and Predict Energy Futures
合作研究:CAS-气候:将活动、支出和能源使用连接到集成系统模型中,以了解和预测能源未来
  • 批准号:
    2243099
  • 财政年份:
    2023
  • 资助金额:
    $ 29.94万
  • 项目类别:
    Standard Grant
Collaborative Research: RUI: Trust but Verify: The Use of Intuition in Engineering Problem Solving
合作研究:RUI:信任但验证:直觉在工程问题解决中的运用
  • 批准号:
    2325524
  • 财政年份:
    2023
  • 资助金额:
    $ 29.94万
  • 项目类别:
    Standard Grant
Collaborative Research: MUCUS: Measuring and Understanding the Cassiopea Use of Space
合作研究:MUCUS:测量和理解仙后座对空间的利用
  • 批准号:
    2227068
  • 财政年份:
    2023
  • 资助金额:
    $ 29.94万
  • 项目类别:
    Standard Grant
Collaborative Research: CyberTraining: Pilot: Building a strong community of computational researchers empowered in the use of novel cutting-edge technologies
协作研究:网络培训:试点:建立一个强大的计算研究人员社区,有权使用新颖的尖端技术
  • 批准号:
    2320990
  • 财政年份:
    2023
  • 资助金额:
    $ 29.94万
  • 项目类别:
    Standard Grant
Collaborative Research: GEO OSE Track 2: Sustainable Open Science Tools to Democratize Use of 3D Geomaterial Data
合作研究:GEO OSE 第 2 轨:可持续开放科学工具使 3D 岩土材料数据的使用民主化
  • 批准号:
    2324786
  • 财政年份:
    2023
  • 资助金额:
    $ 29.94万
  • 项目类别:
    Standard Grant
Collaborative Research: BoCP-Design: US-South Africa: Turning CO2 to stone: the ecosystem service of the oxalate-carbonate pathway and its sensitivity to land use change
合作研究:BoCP-设计:美国-南非:将二氧化碳转化为石头:草酸盐-碳酸盐途径的生态系统服务及其对土地利用变化的敏感性
  • 批准号:
    2224994
  • 财政年份:
    2023
  • 资助金额:
    $ 29.94万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: LARGE: Research into the Use and iNtegration of Data Movement Accelerators (RUN-DMX)
协作研究:PPoSS:大型:数据移动加速器 (RUN-DMX) 的使用和集成研究
  • 批准号:
    2316176
  • 财政年份:
    2023
  • 资助金额:
    $ 29.94万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了