Molecule Maker Lab Institute (MMLI): An AI Institute for Molecular Discovery, Synthetic Strategy, and Manufacturing

Molecule Maker Lab Institute (MMLI):分子发现、合成策略和制造的人工智能研究所

基本信息

  • 批准号:
    2019897
  • 负责人:
  • 金额:
    $ 2000万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Cooperative Agreement
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

The NSF Molecule Maker Lab Institute (MMLI): An AI Institute for Molecular Discovery, Synthetic Strategy, and Manufacturing is supported by National AI Research Institutes Program of the Directorate for Computer and Information Science and Engineering (CISE), in collaboration with the Division of Chemistry (CHE) and the Division of Chemical, Bioengineering, and Environmental Transport Systems (CBET). The institute brings together a team of chemists, engineers, and AI-experts from the University of Illinois Urbana-Champaign, Pennsylvania State University and the Rochester Institute of Technology. The goal of the MMLI is to accelerate the synthesis and manufacture of complex organic molecules. A new AI-enabled synthesis platform is being developed to integrate chemical and enzymatic catalysis with literature mining and machine learning to predict the best way to make new molecules with desirable biological and material properties. This institute is transforming chemical synthesis and generating use-inspired AI advances. Simultaneously, the MMLI is also acting as a training ground for the next generation of scientists with combined expertise in chemical synthesis, bioengineering, and AI-enabled tool development. Outreach efforts aimed towards high school students and the public are being used to show how AI-enable tools can help to make chemical synthesis accessible to non-experts.Chemical synthesis is currently an intuition-driven field that requires experienced experts to design iterative test cycles to make progress towards targeted molecules. The MMLI is developing new AI-enabled tools for chemical synthesis planning, catalyst design, property prediction, and manufacturing to address this bottleneck and accelerate the synthesis and discovery of new molecules. The institute combines expertise in AI, organic synthesis, and bioengineering to achieve the integration of chemical and enzymatic catalysis with a versatile set of building blocks in a new AI-driven synthesis planning tool called AlphaSynthesis. Optimization of this tool is being supported by new foundational AI approaches to text- and image mining, advances in machine learning for synthesis planning and catalyst optimization, as well as the established automated synthesis and bioengineering facilities at the University of Illinois Urbana-Champaign. Demonstration of the utility of the AlphaSynthesis tool is being achieved through the preparation of target molecules and new materials. An open-access reactivity database is being assembled and a hit-list of desirable transformations is being accumulated to encourage collaboration. These foundational studies bridging AI, chemical synthesis, and bioengineering to accelerate the iterative design and test process of chemical synthesis are further serving to bolstering the competitiveness of pharmaceutical, chemical, and technology industries in the US.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
NSF分子制造实验室研究所(MMLI):分子发现,合成策略和制造的人工智能研究所由计算机和信息科学与工程理事会(CISE)的国家人工智能研究所计划支持,与化学部门(CHE)和化学,生物工程和环境运输系统部门(CBET)合作。该研究所汇集了来自伊利诺伊大学厄巴纳-香槟分校、宾夕法尼亚州立大学和罗切斯特理工学院的化学家、工程师和人工智能专家。MMLI的目标是加速复杂有机分子的合成和制造。目前正在开发一个新的人工智能合成平台,将化学和酶催化与文献挖掘和机器学习相结合,以预测制造具有理想生物和材料特性的新分子的最佳方法。该研究所正在改变化学合成,并产生使用启发的人工智能进步。同时,MMLI也是下一代科学家的培训基地,他们在化学合成,生物工程和人工智能工具开发方面具有综合专业知识。针对高中生和公众的外联工作正在被用来展示人工智能工具如何帮助非专家访问化学合成。化学合成目前是一个直觉驱动的领域,需要经验丰富的专家设计迭代测试循环,以朝着目标分子取得进展。MMLI正在开发新的人工智能工具,用于化学合成规划、催化剂设计、性能预测和制造,以解决这一瓶颈,并加速新分子的合成和发现。该研究所结合了人工智能,有机合成和生物工程方面的专业知识,以实现化学和酶催化与一套通用的构建模块的集成,这套构建模块是一种新的人工智能驱动的合成规划工具,称为AlphaSynthesis。该工具的优化得到了文本和图像挖掘的新基础人工智能方法,合成规划和催化剂优化机器学习的进步,以及伊利诺伊大学厄巴纳-香槟分校建立的自动化合成和生物工程设施的支持。正在通过制备目标分子和新材料来证明AlphaSynthesis工具的实用性。目前正在建立一个开放的反应性数据库,并正在积累一份理想的转化清单,以鼓励合作。这些基础研究将人工智能、化学合成和生物工程连接起来,以加速化学合成的迭代设计和测试过程,进一步增强了美国制药、化学和技术行业的竞争力。该奖项反映了NSF的法定使命,通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(20)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
ChemNER: Fine-Grained Chemistry Named Entity Recognition with Ontology-Guided Distant Supervision
ChemNER:具有本体引导远程监督的细粒度化学命名实体识别
Fine-Grained Chemical Entity Typing with Multimodal Knowledge Representation
BERT might be Overkill: A Tiny but Effective Biomedical Entity Linker based on Residual Convolutional Neural Networks
  • DOI:
    10.18653/v1/2021.findings-emnlp.140
  • 发表时间:
    2021-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T. Lai;Heng Ji;ChengXiang Zhai
  • 通讯作者:
    T. Lai;Heng Ji;ChengXiang Zhai
Textual Evidence Mining via Spherical Heterogeneous Information Network Embedding
Closed-loop optimization of general reaction conditions for heteroaryl Suzuki-Miyaura coupling
  • DOI:
    10.1126/science.adc8743
  • 发表时间:
    2022-10-28
  • 期刊:
  • 影响因子:
    56.9
  • 作者:
    Angello, Nicholas H.;Rathore, Vandana;Burke, Martin D.
  • 通讯作者:
    Burke, Martin D.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Huimin Zhao其他文献

STUDY ON A NEW REMOTE SENSING IMAGE CLASSIFICATION METHOD AND ITS APPLICATION
一种新的遥感图像分类方法及其应用研究
Composing and deploying parallelized service function chains
构建和部署并行服务功能链
  • DOI:
    10.1016/j.jnca.2020.102637
  • 发表时间:
    2020-04
  • 期刊:
  • 影响因子:
    8.7
  • 作者:
    Jun Cai;Zhongwei Huang;Jianzhen Luo(罗建桢);Yan Liu;Huimin Zhao;Liping Liao
  • 通讯作者:
    Liping Liao
Research on an Adaptive Variational Mode Decomposition with Double Thresholds for Feature Extraction
双阈值自适应变分模态分解特征提取研究
  • DOI:
    10.3390/sym10120684
  • 发表时间:
    2018-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wu Deng;Hailong Liu;Shengjie Zhang;Haodong Liu;Huimin Zhao;Jinzhao Wu
  • 通讯作者:
    Jinzhao Wu
Altering Enzyme Substrate and Cofactor Specificity via Protein Engineering
通过蛋白质工程改变酶底物和辅因子特异性
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Matthew A. DeSieno;Jing Du;Huimin Zhao
  • 通讯作者:
    Huimin Zhao
Amino acid based ionic liquids for revitalization of sulfated lead anodes
用于硫酸化铅阳极再生的氨基酸基离子液体
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    9.2
  • 作者:
    Jingxia Lu;A. Baby;Abdelilah Asserghine;Joaquín Rodríguez;Huimin Zhao
  • 通讯作者:
    Huimin Zhao

Huimin Zhao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Huimin Zhao', 18)}}的其他基金

I-Corps: Fully Automated and Versatile Biofoundry
I-Corps:全自动多功能生物铸造厂
  • 批准号:
    1719088
  • 财政年份:
    2017
  • 资助金额:
    $ 2000万
  • 项目类别:
    Standard Grant
International Conference on Biochemical and Molecular Engineering XVIII - Beijing, China, June 10-16, 2013
第十八届生化与分子工程国际会议 - 中国北京,2013 年 6 月 10-16 日
  • 批准号:
    1340534
  • 财政年份:
    2013
  • 资助金额:
    $ 2000万
  • 项目类别:
    Standard Grant
CAREER: Bimolecular Engineering via Directed Evolution
职业:通过定向进化进行双分子工程
  • 批准号:
    0348107
  • 财政年份:
    2004
  • 资助金额:
    $ 2000万
  • 项目类别:
    Continuing Grant

相似国自然基金

克罗诺杆菌属及其重要致病种新maker基因的筛选和鉴定方法的建立
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Decision Maker Panel
决策者小组
  • 批准号:
    ES/X013707/1
  • 财政年份:
    2023
  • 资助金额:
    $ 2000万
  • 项目类别:
    Research Grant
The geography of responses to heat risk: linking decision maker and public perceptions
热风险响应的地理分布:将决策者和公众的看法联系起来
  • 批准号:
    2314912
  • 财政年份:
    2023
  • 资助金额:
    $ 2000万
  • 项目类别:
    Standard Grant
Research on tools to support remote collaborative learning of maker activities that leverage both software and hardware
研究支持利用软件和硬件的创客活动远程协作学习的工具
  • 批准号:
    22KJ1010
  • 财政年份:
    2023
  • 资助金额:
    $ 2000万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
The development of the Clinical Picture Maker, a novel video platform to aid the diagnosis and treatment of SCN2A-related disorders, and other rare diseases.
开发了 Clinical Picture Maker,这是一个新型视频平台,可帮助诊断和治疗 SCN2A 相关疾病和其他罕见疾病。
  • 批准号:
    10759930
  • 财政年份:
    2023
  • 资助金额:
    $ 2000万
  • 项目类别:
A Culturally-Responsive Maker Program Designed to Develop the STEM Interest, Self-Efficacy and Science Identity of Black Girls
一个文化响应型创客计划,旨在培养黑人女孩的 STEM 兴趣、自我效能和科学认同
  • 批准号:
    2327579
  • 财政年份:
    2023
  • 资助金额:
    $ 2000万
  • 项目类别:
    Standard Grant
NeuroVivid: Developing and Testing a Maker Experience to Build Interest in Careers in Brain-Computer Interfaces Among Neurodivergent Youth
NeuroVivid:开发和测试创客体验,以培养神经分歧青年对脑机接口职业的兴趣
  • 批准号:
    2241380
  • 财政年份:
    2023
  • 资助金额:
    $ 2000万
  • 项目类别:
    Standard Grant
Decision Maker Panel
决策者小组
  • 批准号:
    ES/X013707/2
  • 财政年份:
    2023
  • 资助金额:
    $ 2000万
  • 项目类别:
    Research Grant
Partnership Development and Planning: Assessment of Maker Practices in Museums
合作伙伴关系发展和规划:博物馆创客实践评估
  • 批准号:
    2314184
  • 财政年份:
    2023
  • 资助金额:
    $ 2000万
  • 项目类别:
    Standard Grant
Makeactive UK: an exploration of Virtual Reality Maker Spaces for multi-user, collaborative design at a distance
Makeactive UK:对用于多用户远程协作设计的虚拟现实创客空间的探索
  • 批准号:
    10021756
  • 财政年份:
    2022
  • 资助金额:
    $ 2000万
  • 项目类别:
    Feasibility Studies
Hk Maker Lab 2.0: Inspiring Engineering Design Thinking in Grades 6 - 12 Students and Teacher
Hk Maker Lab 2.0:启发6-12年级学生和老师的工程设计思维
  • 批准号:
    10653072
  • 财政年份:
    2022
  • 资助金额:
    $ 2000万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了