GCR: Collaborative Research: Plasma-Biofilm Interactions at the Intersection of Physics, Chemistry, Biology and Engineering
GCR:合作研究:物理、化学、生物学和工程学交叉点的等离子体-生物膜相互作用
基本信息
- 批准号:2020010
- 负责人:
- 金额:$ 74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-10-01 至 2025-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Low temperature plasmas – ionized gases – operating at atmospheric pressure are a copious source of reactive oxygen and nitrogen species (RONS). Plasma-produced RONS have the ability to combat antimicrobial resistant bacteria and serve as a novel approach to cancer treatment. Reduction-oxidation (redox) processes play a major role in the cellular life cycle and are the metabolic driving force for aerobic biology. Plasma-induced redox chemistry in cells can potentially regulate these processes. This project will investigate the capability of plasma for control of biofilms – coordinated functional communities of bacteria. Physically removing biofilms can be extremely difficult, and antibiotics and topical decontamination products are largely ineffective due to multipronged biofilm defenses. The control of biofilms has become a grand societal challenge due to their exceptionally broad range of use and impact, from environmental engineering to biomedical applications. As an example, biofilm induced corrosion is a severe problem for world maritime industries. Biofilms and antimicrobial resistance are also major issues in the food industry and in medicine. Antimicrobial resistance is predicted to become the number one health problem in 2050 and the Centers for Disease Control and Prevention reports that every 15 minutes one person in the US dies because of an infection that antibiotics cannot treat effectively. Although the consequences of biofilms are typically thought of as being negative, biofilm bacteria are also extensively used in bioreactors with beneficial applications ranging from water remediation to energy harvesting. This project combines several research advances in plasma science, microbiology and engineering – each significant in their own right – into a convergent, transformative project to investigate fundamental plasma-induced biofilm processes.The goal of the project is to develop the science required to understand the impact of plasmas on communities of living cells. Plasma treatment of organisms can produce non-local effects and systemic responses which are currently not understood. In complex organisms, such as animal models, it is difficult to quantify both the initiating plasma dose to individual cells and to diagnose consequences of the exposure – components of animal models are simply too inter-related. The proposed research will address the critical need to quantify plasma effects on organisms by developing the science required to obtain a fundamental understanding of plasma interactions within a biofilm – a simpler system of communicating organisms that allows access to diagnostics and modeling. Furthermore, model biofilm bacteria (e.g. Pseudomonas aeruginosa) are genetically tractable, lending themselves to detailed studies of plasma-induced effects at a molecular level. This improvement in understanding of systemic effects of plasma will be accomplished by investigating the biological response of plasma-treated, biofilm-associated, bacterial cells and their intercellular communication through the extra-cellular environment. The project will develop this new and convergent research frontier, combining plasma science, microbiology, and state-of-the-art printing methodologies, using biofilms as a model system. While initially focusing on global biofilm response to the plasma treatment, the project will advance plasma and 3D printing frontiers to develop highly controlled spatially-resolved experiments that could ultimately enable the treatment of a single bacterium cell in a biofilm and track the associated local and non-local biological impacts. The societal benefits of this research will be the ability to manipulate the growth and character of biofilms – for example, to eliminate biofilms where they are not desired, or to enhance their proliferation where biofilms are a desired product.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
低温等离子体 - 离子气体 - 在大气压下运行是活性氧和氮种(RONS)的大量来源。血浆生产的RON具有对抗抗菌抗性细菌并作为癌症治疗的新方法。还原氧化(氧化还原)过程在细胞生命周期中起主要作用,是有氧生物学的代谢驱动力。血浆诱导的细胞中的氧化还原化学可以潜在地调节这些过程。该项目将研究血浆控制生物膜的能力 - 细菌的协调功能群落。物理上去除生物膜可能非常困难,并且由于多重生物膜防御能力,抗生素和局部净化产物在很大程度上无效。由于环境工程到生物医学应用,生物膜的控制已成为一个巨大的社会挑战。例如,生物膜诱导的腐蚀是世界海事行业的一个严重问题。生物膜和抗菌耐药性也是食品工业和医学中的主要问题。预计抗菌素的耐药性成为2050年的第一名健康问题,疾病控制和预防中心报告说,由于感染抗生素无法有效治疗,美国一个人每15分钟就死亡。尽管通常认为生物膜的后果是阴性的,但生物膜细菌也被广泛用于生物反应器中,具有从水补救到能量收集的有益应用。该项目结合了等离子体科学,微生物学和工程学的几项研究进展(本身都是重要的),成为一个融合的,变革性的项目,以研究基本的浆液诱导的生物膜过程。该项目的目的是开发科学以理解有机体的等离子体治疗所需的科学,可以产生非局部性效应和目前尚不理解的系统性响应。在复杂的生物(例如动物模型)中,很难量化对单个细胞的发射等离子体剂量和诊断暴露的后果 - 动物模型的组成部分太相关了。拟议的研究将通过开发对生物膜内血浆相互作用的基本理解所需的科学来量化血浆对生物的效应的关键需求,这是一种更简单的通信生物系统,可以访问诊断和建模。此外,模型的生物膜细菌(例如铜绿假单胞菌)在遗传上是可拖延的,它可以详细研究分子水平的血浆诱导的作用。通过研究血浆处理,生物膜相关,细菌细胞及其通过细胞外环境的细胞间通信的生物学反应来实现对血浆系统效应的这种改善。该项目将使用生物膜作为模型系统,将等离子科学,微生物学和最先进的印刷方法结合起来。尽管最初着重于全球生物膜对血浆处理的反应,但该项目将推进血浆和3D打印边界,以开发高度控制的空间分辨实验,这些实验最终可以使生物膜中的单个细菌细胞治疗并跟踪相关的局部和非局部生物学影响。这项研究的社会益处将是操纵生物膜的成长和特征的能力,例如,消除无需进行生物膜的生物膜,或者增强生物膜是所需产品的增殖。该奖项反映了NSF的法规任务,并认为通过基金会的知识优点和广泛的cribia crietia crietia crietia crietia crietia crietia crietia crietia crietia crietia crietia crietia crietia crietia crietia crietia cristia cristia cristia scribia cristia cristia scrip cristia section scorptiation。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Reaction mechanism for atmospheric pressure plasma treatment of cysteine in solution
常压等离子体处理溶液中半胱氨酸的反应机理
- DOI:10.1088/1361-6463/ace196
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Polito, Jordyn;Herrera Quesada, María J.;Stapelmann, Katharina;Kushner, Mark J.
- 通讯作者:Kushner, Mark J.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark Kushner其他文献
Prolonged Sinus Arrest Complicating a Thrombotic Stroke
长时间的窦性停搏使血栓性中风复杂化
- DOI:
10.1111/j.1540-8159.1986.tb05398.x - 发表时间:
1986 - 期刊:
- 影响因子:0
- 作者:
Mark Kushner;R. Peters - 通讯作者:
R. Peters
Giant Pacemaker Spikes: An Electrocardiographic Artifact
- DOI:
10.1378/chest.87.2.256 - 发表时间:
1985-02-01 - 期刊:
- 影响因子:
- 作者:
Robert W. Peters;Mark Kushner;Ken Knapp - 通讯作者:
Ken Knapp
The electrophysiologic effects of oral cibenzoline
- DOI:
10.1016/s0022-0736(84)80020-5 - 发表时间:
1984-01-01 - 期刊:
- 影响因子:
- 作者:
Mark Kushner;Eva Magiros;Robert Peters;Nathan Carliner;Gary Plotnick;Michael Fisher - 通讯作者:
Michael Fisher
Mark Kushner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark Kushner', 18)}}的其他基金
Collaborative Research: GOALI - Nonlinear Coupling in Pulsed Electronegative Plasmas: Multiple-sources, Multiple-frequencies, Multiple-time scales
合作研究:GOALI - 脉冲负电等离子体中的非线性耦合:多源、多频率、多时间尺度
- 批准号:
2009219 - 财政年份:2020
- 资助金额:
$ 74万 - 项目类别:
Standard Grant
Collaborative Research: ECO-CBET: Methane Conversion by Merging Atmospheric Plasma with Transition-Metal Catalysis
合作研究:ECO-CBET:通过大气等离子体与过渡金属催化相结合进行甲烷转化
- 批准号:
2032604 - 财政年份:2020
- 资助金额:
$ 74万 - 项目类别:
Continuing Grant
Collaborative Research: Understanding Plasma-Liquid Interactions Through Controlled Plasma-Microdroplet Experiments and Modeling
合作研究:通过受控等离子体-微滴实验和建模了解等离子体-液体相互作用
- 批准号:
1902878 - 财政年份:2019
- 资助金额:
$ 74万 - 项目类别:
Standard Grant
A Workshop on Science Challenges in Low Temperature Plasma Science and Engineering: Enabling a Future Based on Electricity through Non-Equilibrium Plasma Chemistry
低温等离子体科学与工程科学挑战研讨会:通过非平衡等离子体化学实现基于电的未来
- 批准号:
1613074 - 财政年份:2016
- 资助金额:
$ 74万 - 项目类别:
Standard Grant
Collaborative Research: GOALI - Non-Equilibrium Processes, Stability, Design and Control of Pulsed Plasmas for Materials Processing
合作研究:GOALI - 用于材料加工的脉冲等离子体的非平衡过程、稳定性、设计和控制
- 批准号:
1500126 - 财政年份:2015
- 资助金额:
$ 74万 - 项目类别:
Standard Grant
Collaborative Research: CDI-Type II: Cyber-Enabled Studies of Complexity in Nanodusty Plasmas
合作研究:CDI-II 型:纳米尘等离子体复杂性的网络研究
- 批准号:
1124724 - 财政年份:2011
- 资助金额:
$ 74万 - 项目类别:
Standard Grant
International Experiences in Low Temperature Plasmas: Student Travel Support to Attend the 2010 Gaseous Electronics Conference, October 4-8, 2010 in Paris, France
低温等离子体的国际经验:为学生参加 2010 年 10 月 4-8 日在法国巴黎举行的 2010 年气体电子会议提供旅行支持
- 批准号:
1038603 - 财政年份:2010
- 资助金额:
$ 74万 - 项目类别:
Standard Grant
Atmospheric Pressure Plasma Processing of Polymers: Plasma Dynamics and Nanoscale Plasma-Surface Interactions
聚合物的大气压等离子体加工:等离子体动力学和纳米级等离子体-表面相互作用
- 批准号:
0520368 - 财政年份:2005
- 资助金额:
$ 74万 - 项目类别:
Continuing Grant
Atmospheric Pressure Plasma Processing of Polymers: Plasma Dynamics and Nanoscale Plasma-Surface Interactions
聚合物的大气压等离子体加工:等离子体动力学和纳米级等离子体-表面相互作用
- 批准号:
0315353 - 财政年份:2003
- 资助金额:
$ 74万 - 项目类别:
Continuing Grant
Gordon Research Conference on Plasma Processing Science: Support for Graduate and Post-Doctoral Students
戈登等离子体处理科学研究会议:对研究生和博士后学生的支持
- 批准号:
0215382 - 财政年份:2002
- 资助金额:
$ 74万 - 项目类别:
Standard Grant
相似国自然基金
数智背景下的团队人力资本层级结构类型、团队协作过程与团队效能结果之间关系的研究
- 批准号:72372084
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
在线医疗团队协作模式与绩效提升策略研究
- 批准号:72371111
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
面向人机接触式协同作业的协作机器人交互控制方法研究
- 批准号:62373044
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于数字孪生的颅颌面人机协作智能手术机器人关键技术研究
- 批准号:82372548
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
A-型结晶抗性淀粉调控肠道细菌协作产丁酸机制研究
- 批准号:32302064
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: GCR: Growing a New Science of Landscape Terraformation: The Convergence of Rock, Fluids, and Life to form Complex Ecosystems Across Scales
合作研究:GCR:发展景观改造的新科学:岩石、流体和生命的融合形成跨尺度的复杂生态系统
- 批准号:
2426095 - 财政年份:2024
- 资助金额:
$ 74万 - 项目类别:
Continuing Grant
Collaborative Research: GCR: Convergence on Phosphorus Sensing for Understanding Global Biogeochemistry and Enabling Pollution Management and Mitigation
合作研究:GCR:融合磷传感以了解全球生物地球化学并实现污染管理和缓解
- 批准号:
2317826 - 财政年份:2023
- 资助金额:
$ 74万 - 项目类别:
Continuing Grant
Collaborative Research: GCR: Convergent Anthropocene Systems (Anthems) - A System-of-Systems Paradigm
合作研究:GCR:趋同的人类世系统(颂歌)——系统的系统范式
- 批准号:
2317877 - 财政年份:2023
- 资助金额:
$ 74万 - 项目类别:
Continuing Grant
Collaborative Research: GCR: Convergent Anthropocene Systems (Anthems) - A System-of-Systems Paradigm
合作研究:GCR:趋同的人类世系统(颂歌)——系统的系统范式
- 批准号:
2317876 - 财政年份:2023
- 资助金额:
$ 74万 - 项目类别:
Continuing Grant
Collaborative Research: GCR: Common Pool Resource Theory as a Scalable Framework for Catalyzing Stakeholder-Driven Solutions to the Freshwater Salinization Syndrome
合作研究:GCR:公共池资源理论作为催化利益相关者驱动的淡水盐化综合症解决方案的可扩展框架
- 批准号:
2312326 - 财政年份:2023
- 资助金额:
$ 74万 - 项目类别:
Continuing Grant