Collaborative Research: GOALI - Non-Equilibrium Processes, Stability, Design and Control of Pulsed Plasmas for Materials Processing

合作研究:GOALI - 用于材料加工的脉冲等离子体的非平衡过程、稳定性、设计和控制

基本信息

项目摘要

The goal of this project is to investigate the science and technology of pulsed plasma processing of semiconductor wafers aimed towards developing a knowledge base that will enable pulsed plasmas to be optimized for materials modification. Plasma assisted materials processing is largely responsible for the impressive progress that continues to be made in production of microelectronics devices of ever increasing capability. Plasma etching is the only known, industrially implementable method to fabricate the nanometer sized features in logic and memory chips. During plasma etching, fluxes of ions and neutral particles are directed towards the wafer being processed. The energy and angle of impact of the particles onto the surface of wafers are the critical parameters for the fabrication of microelectronic devices, as well as nanostructured and biocompatible materials. Control of these parameters allows for finer control of the surface composition and, in microelectronics fabrication, etch rate. Low temperature plasmas for plasma materials processing have traditionally used continuously excited plasmas. However, all major semiconductor chip and equipment manufacturers are predicting that pulsed plasmas will be the enabling technology for achieving sub-10 nanometer feature sizes. The most direct impact of this research is addressing fundamental science issues that are of paramount importance to the plasma processing of high performance microelectronics, nanostructures and biocompatible materials. In addition to the technological broader impacts, this project will be highly focused on educational outreach. Prof. Gekelman is one of the founders of LAPTAG (Los Angeles Physics Teachers Alliance Group) and several LAPTAG students and will be involved in these plasma processing studies. Prof. Kushner, director of the Michigan Institute of Plasma Science and Engineering, will leverage those resources to launch the Plasma Picture of the Day website with the goal of providing informative images of plasmas to educate the general public and school children about plasmas.The lack of fundamental understanding of the dynamics of pulsed plasma systems is the current impediment to widespread adoption. For example, instabilities and waves are nearly universally observed in pulsed plasmas, and particularly in electronegative plasmas, which sometimes prevents operation in desirable parameters spaces. The sources of these instabilities and the means to prevent them are not understood. Pulsed plasma processing can be arbitrarily complex. For example, modern capacitively coupled plasma etching tools may be driven by up to 3 separate power supplies at different frequencies which can be pulsed independently at different repetition rates and different duty cycles. The combinations of parameters can number into the millions. This extremely large parameter space places a large premium on having a fundamental understanding of pulsed plasma processing and so be able to predict plasma performance. In this research project, a highly collaborative experimental-modeling effort will investigate the fundamental properties of pulsed plasmas as used in materials processing, with an emphasis on instabilities and waves, diagnosing and modeling the dynamics of the transition from interpulse afterglow to powered plasma, and the means to improve uniformity through pulsing. Laser induced fluorescence will be used to characterize the trajectory of ions as they are accelerated through the transient sheaths produced by pulsed plasmas; and will be correlated with Langmuir probe measurements of plasma properties. Multi-dimensional computer modeling will be validated by these measurements and will be further used to illuminate fundamental issues related to plasma transport in pulsed systems.
该项目的目的是研究半导体晶片的脉冲等离子体处理的科学和技术,旨在开发知识库,该知识库将使脉冲等离子体能够优化材料修饰。血浆辅助材料加工在很大程度上是为了使能力越来越多的微电子设备的生产中所取得的令人印象深刻的进步。等离子体蚀刻是唯一可以在逻辑和记忆芯片中构建纳米尺寸特征的工业实现方法。在血浆蚀刻过程中,离子和中性颗粒的通量针对晶圆的处理。颗粒上晶圆表面的能量和影响角是制造微电器设备以及纳米结构和生物相容性材料的关键参数。对这些参数的控制可以更好地控制表面组成,并且在微电子制造中,蚀刻速率。血浆材料处理的低温等离子体传统上使用了连续激发的等离子体。但是,所有主要的半导体芯片和设备制造商都预测,脉冲等离子体将是实现低于10纳米特征尺寸的能力技术。 这项研究的最直接影响是解决基本科学问题,这对于高性能微电子,纳米结构和生物相容性材料的血浆处理至关重要。除了技术更广泛的影响外,该项目还将高度关注教育外展。 Gekelman教授是Laptag(洛杉矶物理教师联盟小组)和几个Laptag学生的创始人之一,将参与这些等离子体处理研究。密歇根州等离子体科学与工程研究所主任库什纳教授将利用这些资源来启动日常网站的等离子图片,目的是提供有关等离子体的信息图像,以教育普通公众和学童有关等离子体的知识。缺乏对脉冲血浆系统的基本理解,即目前的动态性能是促进了人们对脉冲的影响。例如,在脉冲等离子体中,尤其是在电负性等离子体中,几乎普遍观察到不稳定性和波浪,这有时会阻止在理想的参数空间中运行。这些不稳定性的来源和防止它们的手段尚不理解。脉冲血浆处理可能是任意复杂的。例如,现代的电容性等离子体蚀刻工具可以由多达3个单独的电源以不同的频率驱动,这些频率可以以不同的重复速率和不同的占空比独立脉冲。参数的组合可以数百万。这个极大的参数空间使对脉冲血浆处理的基本了解具有很大的溢价,因此能够预测血浆性能。在该研究项目中,一项高度协作的实验模型工作将调查材料处理中使用的脉冲等离子体的基本特性,并着重于不稳定性和波浪,诊断和建模从插孔余潮到电力等离子体的过渡的动态,以及通过脉冲来改善均匀性的手段。激光诱导的荧光将用于表征离子的轨迹,因为它们通过脉冲等离子体产生的瞬态鞘加速。并将与血浆特性的Langmuir探针测量相关。多维计算机建模将通过这些测量值验证,并将进一步用于阐明与脉冲系统中血浆传输相关的基本问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mark Kushner其他文献

Prolonged Sinus Arrest Complicating a Thrombotic Stroke
长时间的窦性停搏使血栓性中风复杂化
Giant Pacemaker Spikes: An Electrocardiographic Artifact
  • DOI:
    10.1378/chest.87.2.256
  • 发表时间:
    1985-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Robert W. Peters;Mark Kushner;Ken Knapp
  • 通讯作者:
    Ken Knapp
The electrophysiologic effects of oral cibenzoline
  • DOI:
    10.1016/s0022-0736(84)80020-5
  • 发表时间:
    1984-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Mark Kushner;Eva Magiros;Robert Peters;Nathan Carliner;Gary Plotnick;Michael Fisher
  • 通讯作者:
    Michael Fisher

Mark Kushner的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mark Kushner', 18)}}的其他基金

GCR: Collaborative Research: Plasma-Biofilm Interactions at the Intersection of Physics, Chemistry, Biology and Engineering
GCR:合作研究:物理、化学、生物学和工程学交叉点的等离子体-生物膜相互作用
  • 批准号:
    2020010
  • 财政年份:
    2020
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: GOALI - Nonlinear Coupling in Pulsed Electronegative Plasmas: Multiple-sources, Multiple-frequencies, Multiple-time scales
合作研究:GOALI - 脉冲负电等离子体中的非线性耦合:多源、多频率、多时间尺度
  • 批准号:
    2009219
  • 财政年份:
    2020
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Standard Grant
Collaborative Research: ECO-CBET: Methane Conversion by Merging Atmospheric Plasma with Transition-Metal Catalysis
合作研究:ECO-CBET:通过大气等离子体与过渡金属催化相结合进行甲烷转化
  • 批准号:
    2032604
  • 财政年份:
    2020
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding Plasma-Liquid Interactions Through Controlled Plasma-Microdroplet Experiments and Modeling
合作研究:通过受控等离子体-微滴实验和建模了解等离子体-液体相互作用
  • 批准号:
    1902878
  • 财政年份:
    2019
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Standard Grant
A Workshop on Science Challenges in Low Temperature Plasma Science and Engineering: Enabling a Future Based on Electricity through Non-Equilibrium Plasma Chemistry
低温等离子体科学与工程科学挑战研讨会:通过非平衡等离子体化学实现基于电的未来
  • 批准号:
    1613074
  • 财政年份:
    2016
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Standard Grant
Collaborative Research: CDI-Type II: Cyber-Enabled Studies of Complexity in Nanodusty Plasmas
合作研究:CDI-II 型:纳米尘等离子体复杂性的网络研究
  • 批准号:
    1124724
  • 财政年份:
    2011
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Standard Grant
International Experiences in Low Temperature Plasmas: Student Travel Support to Attend the 2010 Gaseous Electronics Conference, October 4-8, 2010 in Paris, France
低温等离子体的国际经验:为学生参加 2010 年 10 月 4-8 日在法国巴黎举行的 2010 年气体电子会议提供旅行支持
  • 批准号:
    1038603
  • 财政年份:
    2010
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Standard Grant
Atmospheric Pressure Plasma Processing of Polymers: Plasma Dynamics and Nanoscale Plasma-Surface Interactions
聚合物的大气压等离子体加工:等离子体动力学和纳米级等离子体-表面相互作用
  • 批准号:
    0520368
  • 财政年份:
    2005
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Continuing Grant
Atmospheric Pressure Plasma Processing of Polymers: Plasma Dynamics and Nanoscale Plasma-Surface Interactions
聚合物的大气压等离子体加工:等离子体动力学和纳米级等离子体-表面相互作用
  • 批准号:
    0315353
  • 财政年份:
    2003
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Continuing Grant
Gordon Research Conference on Plasma Processing Science: Support for Graduate and Post-Doctoral Students
戈登等离子体处理科学研究会议:对研究生和博士后学生的支持
  • 批准号:
    0215382
  • 财政年份:
    2002
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Standard Grant

相似国自然基金

开放人机协作场景中的未知目标识别和人体运动预测方法研究
  • 批准号:
    62203348
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
开放人机协作场景中的未知目标识别和人体运动预测方法研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向未知目标协作搬运的黏附型空中作业机器人动力学机理与协调控制研究
  • 批准号:
    52202452
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向变工况人机协作的非朗伯表面目标视觉定位研究
  • 批准号:
    52105525
  • 批准年份:
    2021
  • 资助金额:
    24.00 万元
  • 项目类别:
    青年科学基金项目
面向变工况人机协作的非朗伯表面目标视觉定位研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: GOALI: Bio-inspired bistable energy harvesting for fish telemetry tags
合作研究:GOALI:用于鱼类遥测标签的仿生双稳态能量收集
  • 批准号:
    2245117
  • 财政年份:
    2022
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Standard Grant
GOALI/Collaborative Research: Instabilities and Local Strains in Engineered Cartilage Scaffold
GOALI/合作研究:工程软骨支架的不稳定性和局部应变
  • 批准号:
    2129825
  • 财政年份:
    2022
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Standard Grant
GOALI/Collaborative Research: Instabilities and Local Strains in Engineered Cartilage Scaffold
GOALI/合作研究:工程软骨支架的不稳定性和局部应变
  • 批准号:
    2129776
  • 财政年份:
    2022
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Standard Grant
DMREF: Collaborative Research: GOALI: Accelerating Discovery of High Entropy Silicates for Extreme Environments
DMREF:合作研究:GOALI:加速极端环境中高熵硅酸盐的发现
  • 批准号:
    2219788
  • 财政年份:
    2022
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Standard Grant
GOALI/Collaborative Research: Control-Oriented Modeling and Predictive Control of High Efficiency Low-emission Natural Gas Engines
GOALI/协作研究:高效低排放天然气发动机的面向控制的建模和预测控制
  • 批准号:
    2302217
  • 财政年份:
    2022
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了