Collaborative Research: GOALI - Non-Equilibrium Processes, Stability, Design and Control of Pulsed Plasmas for Materials Processing

合作研究:GOALI - 用于材料加工的脉冲等离子体的非平衡过程、稳定性、设计和控制

基本信息

项目摘要

The goal of this project is to investigate the science and technology of pulsed plasma processing of semiconductor wafers aimed towards developing a knowledge base that will enable pulsed plasmas to be optimized for materials modification. Plasma assisted materials processing is largely responsible for the impressive progress that continues to be made in production of microelectronics devices of ever increasing capability. Plasma etching is the only known, industrially implementable method to fabricate the nanometer sized features in logic and memory chips. During plasma etching, fluxes of ions and neutral particles are directed towards the wafer being processed. The energy and angle of impact of the particles onto the surface of wafers are the critical parameters for the fabrication of microelectronic devices, as well as nanostructured and biocompatible materials. Control of these parameters allows for finer control of the surface composition and, in microelectronics fabrication, etch rate. Low temperature plasmas for plasma materials processing have traditionally used continuously excited plasmas. However, all major semiconductor chip and equipment manufacturers are predicting that pulsed plasmas will be the enabling technology for achieving sub-10 nanometer feature sizes. The most direct impact of this research is addressing fundamental science issues that are of paramount importance to the plasma processing of high performance microelectronics, nanostructures and biocompatible materials. In addition to the technological broader impacts, this project will be highly focused on educational outreach. Prof. Gekelman is one of the founders of LAPTAG (Los Angeles Physics Teachers Alliance Group) and several LAPTAG students and will be involved in these plasma processing studies. Prof. Kushner, director of the Michigan Institute of Plasma Science and Engineering, will leverage those resources to launch the Plasma Picture of the Day website with the goal of providing informative images of plasmas to educate the general public and school children about plasmas.The lack of fundamental understanding of the dynamics of pulsed plasma systems is the current impediment to widespread adoption. For example, instabilities and waves are nearly universally observed in pulsed plasmas, and particularly in electronegative plasmas, which sometimes prevents operation in desirable parameters spaces. The sources of these instabilities and the means to prevent them are not understood. Pulsed plasma processing can be arbitrarily complex. For example, modern capacitively coupled plasma etching tools may be driven by up to 3 separate power supplies at different frequencies which can be pulsed independently at different repetition rates and different duty cycles. The combinations of parameters can number into the millions. This extremely large parameter space places a large premium on having a fundamental understanding of pulsed plasma processing and so be able to predict plasma performance. In this research project, a highly collaborative experimental-modeling effort will investigate the fundamental properties of pulsed plasmas as used in materials processing, with an emphasis on instabilities and waves, diagnosing and modeling the dynamics of the transition from interpulse afterglow to powered plasma, and the means to improve uniformity through pulsing. Laser induced fluorescence will be used to characterize the trajectory of ions as they are accelerated through the transient sheaths produced by pulsed plasmas; and will be correlated with Langmuir probe measurements of plasma properties. Multi-dimensional computer modeling will be validated by these measurements and will be further used to illuminate fundamental issues related to plasma transport in pulsed systems.
该项目的目标是研究半导体晶片的脉冲等离子体处理的科学和技术,旨在开发一个知识库,使脉冲等离子体能够优化材料改性。等离子体辅助材料加工是微电子器件生产中不断取得令人印象深刻的进步的主要原因。等离子体蚀刻是唯一已知的、工业上可实施的在逻辑和存储器芯片中制造纳米尺寸特征的方法。在等离子体蚀刻期间,离子和中性粒子的通量被引导朝向正被处理的晶片。颗粒在晶片表面上的撞击能量和角度是制造微电子器件以及纳米结构和生物相容性材料的关键参数。这些参数的控制允许更精细地控制表面组成,并且在微电子制造中,允许更精细地控制蚀刻速率。用于等离子体材料处理的低温等离子体传统上使用连续激发的等离子体。然而,所有主要的半导体芯片和设备制造商都预测,脉冲等离子体将成为实现10纳米以下特征尺寸的技术。 这项研究最直接的影响是解决基础科学问题,这些问题对高性能微电子,纳米结构和生物相容性材料的等离子体处理至关重要。除了技术上的广泛影响外,该项目还将高度重视教育推广。 Gekelman教授是LAPTAG(洛杉矶物理教师联盟组织)的创始人之一,也是LAPTAG的几名学生,他将参与这些等离子体处理研究。密歇根等离子体科学与工程研究所所长库什纳教授将利用这些资源推出等离子体每日图片网站,目的是提供信息丰富的等离子体图像,以教育公众和学童了解等离子体。对脉冲等离子体系统动力学缺乏基本了解是目前广泛采用的障碍。例如,在脉冲等离子体中,特别是在电负性等离子体中,几乎普遍观察到不稳定性和波,这有时会阻止在期望的参数空间中的操作。这些不稳定性的来源和防止它们的手段尚不清楚。脉冲等离子体处理可以任意复杂。例如,现代的电容耦合等离子体蚀刻工具可以由多达3个不同频率的独立电源驱动,这些电源可以以不同的重复率和不同的占空比独立地脉冲。参数的组合可以数以百万计。这个极大的参数空间非常重视对脉冲等离子体处理的基本理解,因此能够预测等离子体性能。在这个研究项目中,一个高度合作的实验建模工作将调查用于材料加工的脉冲等离子体的基本特性,重点是不稳定性和波,诊断和建模从脉冲间余辉到动力等离子体的过渡动力学,以及通过脉冲提高均匀性的方法。激光诱导荧光将被用来表征离子的轨迹,因为它们是通过脉冲等离子体产生的瞬态鞘加速,并将与朗缪尔探针测量等离子体特性。多维计算机建模将通过这些测量进行验证,并将进一步用于阐明与脉冲系统中等离子体传输相关的基本问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mark Kushner其他文献

Prolonged Sinus Arrest Complicating a Thrombotic Stroke
长时间的窦性停搏使血栓性中风复杂化
The electrophysiologic effects of oral cibenzoline
  • DOI:
    10.1016/s0022-0736(84)80020-5
  • 发表时间:
    1984-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Mark Kushner;Eva Magiros;Robert Peters;Nathan Carliner;Gary Plotnick;Michael Fisher
  • 通讯作者:
    Michael Fisher
Giant Pacemaker Spikes: An Electrocardiographic Artifact
  • DOI:
    10.1378/chest.87.2.256
  • 发表时间:
    1985-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Robert W. Peters;Mark Kushner;Ken Knapp
  • 通讯作者:
    Ken Knapp

Mark Kushner的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mark Kushner', 18)}}的其他基金

GCR: Collaborative Research: Plasma-Biofilm Interactions at the Intersection of Physics, Chemistry, Biology and Engineering
GCR:合作研究:物理、化学、生物学和工程学交叉点的等离子体-生物膜相互作用
  • 批准号:
    2020010
  • 财政年份:
    2020
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: GOALI - Nonlinear Coupling in Pulsed Electronegative Plasmas: Multiple-sources, Multiple-frequencies, Multiple-time scales
合作研究:GOALI - 脉冲负电等离子体中的非线性耦合:多源、多频率、多时间尺度
  • 批准号:
    2009219
  • 财政年份:
    2020
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Standard Grant
Collaborative Research: ECO-CBET: Methane Conversion by Merging Atmospheric Plasma with Transition-Metal Catalysis
合作研究:ECO-CBET:通过大气等离子体与过渡金属催化相结合进行甲烷转化
  • 批准号:
    2032604
  • 财政年份:
    2020
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding Plasma-Liquid Interactions Through Controlled Plasma-Microdroplet Experiments and Modeling
合作研究:通过受控等离子体-微滴实验和建模了解等离子体-液体相互作用
  • 批准号:
    1902878
  • 财政年份:
    2019
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Standard Grant
A Workshop on Science Challenges in Low Temperature Plasma Science and Engineering: Enabling a Future Based on Electricity through Non-Equilibrium Plasma Chemistry
低温等离子体科学与工程科学挑战研讨会:通过非平衡等离子体化学实现基于电的未来
  • 批准号:
    1613074
  • 财政年份:
    2016
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Standard Grant
Collaborative Research: CDI-Type II: Cyber-Enabled Studies of Complexity in Nanodusty Plasmas
合作研究:CDI-II 型:纳米尘等离子体复杂性的网络研究
  • 批准号:
    1124724
  • 财政年份:
    2011
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Standard Grant
International Experiences in Low Temperature Plasmas: Student Travel Support to Attend the 2010 Gaseous Electronics Conference, October 4-8, 2010 in Paris, France
低温等离子体的国际经验:为学生参加 2010 年 10 月 4-8 日在法国巴黎举行的 2010 年气体电子会议提供旅行支持
  • 批准号:
    1038603
  • 财政年份:
    2010
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Standard Grant
Atmospheric Pressure Plasma Processing of Polymers: Plasma Dynamics and Nanoscale Plasma-Surface Interactions
聚合物的大气压等离子体加工:等离子体动力学和纳米级等离子体-表面相互作用
  • 批准号:
    0520368
  • 财政年份:
    2005
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Continuing Grant
Atmospheric Pressure Plasma Processing of Polymers: Plasma Dynamics and Nanoscale Plasma-Surface Interactions
聚合物的大气压等离子体加工:等离子体动力学和纳米级等离子体-表面相互作用
  • 批准号:
    0315353
  • 财政年份:
    2003
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Continuing Grant
Gordon Research Conference on Plasma Processing Science: Support for Graduate and Post-Doctoral Students
戈登等离子体处理科学研究会议:对研究生和博士后学生的支持
  • 批准号:
    0215382
  • 财政年份:
    2002
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: GOALI: Bio-inspired bistable energy harvesting for fish telemetry tags
合作研究:GOALI:用于鱼类遥测标签的仿生双稳态能量收集
  • 批准号:
    2245117
  • 财政年份:
    2022
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Standard Grant
GOALI/Collaborative Research: Instabilities and Local Strains in Engineered Cartilage Scaffold
GOALI/合作研究:工程软骨支架的不稳定性和局部应变
  • 批准号:
    2129825
  • 财政年份:
    2022
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Standard Grant
GOALI/Collaborative Research: Instabilities and Local Strains in Engineered Cartilage Scaffold
GOALI/合作研究:工程软骨支架的不稳定性和局部应变
  • 批准号:
    2129776
  • 财政年份:
    2022
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Standard Grant
DMREF: Collaborative Research: GOALI: Accelerating Discovery of High Entropy Silicates for Extreme Environments
DMREF:合作研究:GOALI:加速极端环境中高熵硅酸盐的发现
  • 批准号:
    2219788
  • 财政年份:
    2022
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Standard Grant
GOALI/Collaborative Research: Control-Oriented Modeling and Predictive Control of High Efficiency Low-emission Natural Gas Engines
GOALI/协作研究:高效低排放天然气发动机的面向控制的建模和预测控制
  • 批准号:
    2302217
  • 财政年份:
    2022
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Standard Grant
GOALI/Collaborative Research: Understanding Multiscale Mechanics of Cyclic Bending under Tension to Improve Elongation-to-Fracture of Hexagonal Metals
GOALI/合作研究:了解张力下循环弯曲的多尺度力学,以提高六方金属的断裂伸长率
  • 批准号:
    2147126
  • 财政年份:
    2022
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Standard Grant
GOALI/Collaborative Research: Understanding Multiscale Mechanics of Cyclic Bending under Tension to Improve Elongation-to-Fracture of Hexagonal Metals
GOALI/合作研究:了解张力下循环弯曲的多尺度力学,以提高六方金属的断裂伸长率
  • 批准号:
    2147122
  • 财政年份:
    2022
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Standard Grant
Collaborative Research: ISS: GOALI: Transients and Instabilities in Flow Boiling and Condensation Under Microgravity
合作研究:ISS:GOALI:微重力下流动沸腾和冷凝的瞬态和不稳定性
  • 批准号:
    2126461
  • 财政年份:
    2021
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Standard Grant
Collaborative Research/GOALI: Fully Continuous Downstream Processing Enabled by Coupled Precipitation-Filtration Capture Operations
协作研究/GOALI:通过耦合沉淀-过滤捕获操作实现完全连续的下游处理
  • 批准号:
    2032261
  • 财政年份:
    2021
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Standard Grant
Collaborative Research & GOALI: Direct-Fed Ethanol Metal-Supported Solid Oxide Fuel Cells
合作研究
  • 批准号:
    2050691
  • 财政年份:
    2021
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了