I-Corps: Malware Analysis to Generate Important Capabilities
I-Corps:恶意软件分析以生成重要功能
基本信息
- 批准号:2020025
- 负责人:
- 金额:$ 5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-01 至 2022-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The broader impact/commercial potential of this I-Corps project is to defeat cyber-adversaries. The proposed technology will use machine learning techniques to automate and discover current unknown malware to provide reliable pre- and post-breach intelligence. The goal for these products is to capable of integration into any existing cybersecurity infrastructure. This technology may be used to gather data from other products to make predictions about the threat landscape. This project will explore the information needs regarding the specific features embedded in the malware code.This I-Corps project is based on the development of a large malware analysis platform that performs static analysis of files to produce state-of-the-art malware characterizations, including representing malware as graphs. These malware detection and classification models have become extremely accurate, thanks to vast amounts of data generated from malware datasets used in the development. After analyzing thousands of different malware families in many ways, these deep learning models have been trained to produce accurate and generalizable models able to detect incoming threats in large organizations and reduce false positives to help combat alert fatigue. This holistic view allows the user to catch novel and heavily obfuscated threats that evade models trained on traditional indicators.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个I-Corps项目更广泛的影响/商业潜力是击败网络对手。 拟议的技术将使用机器学习技术来自动化和发现当前未知的恶意软件,以提供可靠的入侵前和入侵后情报。这些产品的目标是能够集成到任何现有的网络安全基础设施中。该技术可用于从其他产品收集数据,以预测威胁状况。 该项目将探讨有关恶意软件代码中嵌入的特定功能的信息需求。该I-Corps项目基于大型恶意软件分析平台的开发,该平台对文件进行静态分析,以产生最先进的恶意软件特征,包括将恶意软件表示为图形。这些恶意软件检测和分类模型已经变得非常准确,这要归功于从开发中使用的恶意软件数据集生成的大量数据。在以多种方式分析了数千种不同的恶意软件家族之后,这些深度学习模型已经过训练,能够生成准确且可推广的模型,能够检测大型组织中的传入威胁,并减少误报,以帮助应对警报疲劳。该奖项反映了NSF的法定使命,通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dan Freeman其他文献
Youth and Risky Consumption: Moving Toward a Transformative Approach
年轻人与风险消费:迈向变革性方法
- DOI:
10.1108/ijmhsc-05-2020-0054 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Marlys J. Mason;J. F. Tanner;M. Piacentini;Dan Freeman;Trena T. Anastasia;Wided Batat;W. Boland;Murad Canbulut;J. Drenten;Anne Hamby;P. Rangan;Zhiyong Yang - 通讯作者:
Zhiyong Yang
Youths' understandings of cigarette advertisements.
青少年对香烟广告的理解。
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Dan Freeman;M. Brucks;Melanie Wallendorf;W. Boland - 通讯作者:
W. Boland
RISK OF SUBSEQUENT AND SIMULTANEOUS SIDS IN INFANTS OF TWIN PREGNANCIES• 453
双胎妊娠婴儿后续和同时发生婴儿猝死综合征的风险•453
- DOI:
10.1203/00006450-199704001-00473 - 发表时间:
1997-04-01 - 期刊:
- 影响因子:3.100
- 作者:
Michael H Malloy;Dan Freeman - 通讯作者:
Dan Freeman
Entrepreneurial Leadership Across Contexts: Unique Challenges and Skills
- DOI:
10.1002/jls.21338 - 发表时间:
2014-09 - 期刊:
- 影响因子:1.5
- 作者:
Dan Freeman - 通讯作者:
Dan Freeman
Advancing a participatory approach for youth risk behavior: Foundations, distinctions, and research directions
推进青少年风险行为的参与式方法:基础、区别和研究方向
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Marlys J. Mason;J. F. Tanner;M. Piacentini;Dan Freeman;Trena T. Anastasia;Wided Batat;W. Boland;Murad Canbulut;J. Drenten;Anne Hamby;P. Rangan;Zhiyong Yang - 通讯作者:
Zhiyong Yang
Dan Freeman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dan Freeman', 18)}}的其他基金
I-Corps: A Novel Approach to Sanitize Fresh Produce, Food-Contact Surfaces, and Wash Water Using Micro/nanobubbles
I-Corps:一种利用微/纳米气泡对新鲜农产品、食品接触表面和洗涤水进行消毒的新方法
- 批准号:
2019819 - 财政年份:2020
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
I-Corps: Polymer-free durable carbon nanotube (CNT) film membrane
I-Corps:不含聚合物的耐用碳纳米管 (CNT) 薄膜
- 批准号:
2020016 - 财政年份:2020
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
I-Corps: Lignin derived bio-based materials and chemicals
I-Corps:木质素衍生的生物基材料和化学品
- 批准号:
1944693 - 财政年份:2019
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
I-Corps: Spectral Computed Tomography for Material Identification and Threat Detection
I-Corps:用于材料识别和威胁检测的光谱计算机断层扫描
- 批准号:
1947293 - 财政年份:2019
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
I-Corps: Electrochemical Platform for Chemical Synthesis from Carbon Monoxide
I-Corps:一氧化碳化学合成的电化学平台
- 批准号:
1947752 - 财政年份:2019
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
I-Corps Sites: Type II - University of Delaware I-Corps Site
I-Corps 站点:II 类 - 特拉华大学 I-Corps 站点
- 批准号:
1829233 - 财政年份:2018
- 资助金额:
$ 5万 - 项目类别:
Continuing Grant
I-Corps Sites as an Ecosystem Catalyst
I-Corps 站点作为生态系统催化剂
- 批准号:
1347329 - 财政年份:2014
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: SaTC: EDU: Adversarial Malware Analysis - An Artificial Intelligence Driven Hands-On Curriculum for Next Generation Cyber Security Workforce
协作研究:SaTC:EDU:对抗性恶意软件分析 - 下一代网络安全劳动力的人工智能驱动实践课程
- 批准号:
2230609 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Advanced Malware Analysis that Aggressively Modifies Malware Programs
积极修改恶意软件程序的高级恶意软件分析
- 批准号:
23K11096 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: SaTC: EDU: Adversarial Malware Analysis - An Artificial Intelligence Driven Hands-On Curriculum for Next Generation Cyber Security Workforce
协作研究:SaTC:EDU:对抗性恶意软件分析 - 下一代网络安全劳动力的人工智能驱动实践课程
- 批准号:
2230610 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
SaTC: CORE: Small: A Transparent and Customizable Android Container-Based Virtualization Architecture for Dynamic Malware Analysis
SaTC:CORE:Small:用于动态恶意软件分析的透明且可定制的基于 Android 容器的虚拟化架构
- 批准号:
2312185 - 财政年份:2022
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
SaTC: CORE: Small: Automated Dynamic Analysis for Smart Device Malware Hiding Mechanisms
SaTC:核心:小型:智能设备恶意软件隐藏机制的自动动态分析
- 批准号:
2154483 - 财政年份:2022
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
SaTC: CORE: Small: A Transparent and Customizable Android Container-Based Virtualization Architecture for Dynamic Malware Analysis
SaTC:CORE:Small:用于动态恶意软件分析的透明且可定制的基于 Android 容器的虚拟化架构
- 批准号:
2128703 - 财政年份:2021
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Analysis of Dataset Shifts in Mobile Malware
移动恶意软件中数据集变化的分析
- 批准号:
456292433 - 财政年份:2021
- 资助金额:
$ 5万 - 项目类别:
WBP Position
Collaborative Research: SaTC: EDU: Artificial Intelligence Assisted Malware Analysis
合作研究:SaTC:EDU:人工智能辅助恶意软件分析
- 批准号:
2133190 - 财政年份:2021
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: EDU: Artificial Intelligence Assisted Malware Analysis
合作研究:SaTC:EDU:人工智能辅助恶意软件分析
- 批准号:
2150297 - 财政年份:2021
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: EDU: Artificial Intelligence Assisted Malware Analysis
合作研究:SaTC:EDU:人工智能辅助恶意软件分析
- 批准号:
2025686 - 财政年份:2020
- 资助金额:
$ 5万 - 项目类别:
Standard Grant