Collaborative Research: SaTC: EDU: Artificial Intelligence Assisted Malware Analysis
合作研究:SaTC:EDU:人工智能辅助恶意软件分析
基本信息
- 批准号:2133190
- 负责人:
- 金额:$ 10.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-15 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The use of Artificial Intelligence (AI) and Machine Learning (ML) to solve cybersecurity problems has been gaining traction within industry and academia, in part as a response to widespread malware attacks on critical systems, such as cloud infrastructures, government offices or hospitals, and the vast amounts of data they generate. AI- and ML-assisted cybersecurity offers data-driven automation that could enable security systems to identify and respond to cyber threats in real time. However, there is currently a shortfall of professionals trained in AI and ML for cybersecurity. This project will address the shortfall by developing lab-intensive modules that enable undergraduate and graduate students to gain fundamental and advanced knowledge in applying AI and ML techniques to real-world datasets to learn about Cyber Threat Intelligence (CTI), malware analysis, and classification, among other important topics in cybersecurity. The proposed project will impact more than 400 students annually and is uniquely poised to provide opportunities to a diverse student population. Tennessee Technical University and University of North Carolina Wilmington are located in economically challenged regions. Manhattan College has a student population that is 31% minority (20% Hispanic) and 33% first generation college students. In addition, this project proposes to increase participation of underrepresented groups in STEM by conducting workshops and participating in professional conferences, such as The Women in Cybersecurity Conference, Community College Cyber Summit, and Society of Hispanic Professional Engineers. Providing undergraduate and graduate students with training in the use of AI in malware analysis is an important step towards bridging the current cybersecurity talent gap. The project will develop six self-contained and adaptive modules in "AI-assisted Malware Analysis." Topics will include: (1) CTI and malware attack stages, (2) malware knowledge representation and CTI sharing, (3) malware data collection and feature identification, (4) AI-assisted malware detection, (5) malware classification and attribution, and (6) advanced malware research topics and case studies such as adversarial learning and Advanced Persistent Threat (APT) detection. The course modules will be evaluated and assessed to determine their impact on students. Workshops and tutorial sessions at conferences will be used to expand the project’s impact and provide students and enthusiasts with hands-on experience of aspects of AI-assisted malware analysis using real-world datasets. A two-day training workshop for external faculty will also be arranged to enable further dissemination of the modules. The suite of activities proposed in this project will train students, researchers, and professionals in AI-assisted malware analysis and prepare them to meet future cybersecurity challenges. This project is supported by the Secure and Trustworthy Cyberspace (SaTC) program, which funds proposals that address cybersecurity and privacy, and in this case specifically cybersecurity education. The SaTC program aligns with the Federal Cybersecurity Research and Development Strategic Plan and the National Privacy Research Strategy to protect and preserve the growing social and economic benefits of cyber systems while ensuring security and privacy.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
使用人工智能(AI)和机器学习(ML)来解决网络安全问题已经在工业界和学术界获得了越来越多的关注,部分原因是为了应对对关键系统(如云基础设施,政府办公室或医院)以及它们生成的大量数据的广泛恶意软件攻击。人工智能和ML辅助的网络安全提供了数据驱动的自动化,可以使安全系统能够真实的识别和响应网络威胁。然而,目前缺乏接受过AI和ML网络安全培训的专业人员。该项目将通过开发实验室密集型模块来解决这一不足,使本科生和研究生能够获得将AI和ML技术应用于现实世界数据集的基础和高级知识,以了解网络威胁情报(CTI),恶意软件分析和分类,以及网络安全中的其他重要主题。拟议的项目将影响每年超过400名学生,是独特的准备提供机会,以多样化的学生群体。 田纳西技术大学和北卡罗来纳州威尔明顿大学位于经济困难的地区。 曼哈顿学院的学生人口中有31%是少数民族(20%是西班牙裔),33%是第一代大学生。此外,该项目还建议通过举办研讨会和参加专业会议,如网络安全中的妇女会议、社区学院网络峰会和西班牙裔专业工程师协会,增加STEM中代表性不足的群体的参与。 为本科生和研究生提供在恶意软件分析中使用人工智能的培训是弥合当前网络安全人才缺口的重要一步。该项目将在“人工智能辅助恶意软件分析”中开发六个独立和自适应的模块。“主题包括:(1)CTI和恶意软件攻击阶段,(2)恶意软件知识表示和CTI共享,(3)恶意软件数据收集和特征识别,(4)人工智能辅助的恶意软件检测,(5)恶意软件分类和归因,以及(6)高级恶意软件研究主题和案例研究,如对抗学习和高级持续威胁(APT)检测。将对课程模块进行评估和评估,以确定其对学生的影响。会议期间的研讨会和辅导课程将用于扩大项目的影响,并为学生和爱好者提供使用真实世界数据集进行AI辅助恶意软件分析的实践经验。此外,亦会为校外教职员安排为期两天的培训工作坊,以便进一步推广这些单元。该项目中提出的一系列活动将培训学生、研究人员和专业人员进行人工智能辅助恶意软件分析,并使他们做好应对未来网络安全挑战的准备。该项目得到了安全和值得信赖的网络空间(SaTC)计划的支持,该计划为解决网络安全和隐私问题的提案提供资金,在这种情况下,特别是网络安全教育。SATC计划与联邦网络安全研究和发展战略计划和国家隐私研究战略保持一致,以保护和维护网络系统日益增长的社会和经济效益,同时确保安全和隐私。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Using Knowledge Graphs and Reinforcement Learning for Malware Analysis
- DOI:10.1109/bigdata50022.2020.9378491
- 发表时间:2020-12
- 期刊:
- 影响因子:0
- 作者:Aritran Piplai;P. Ranade;Anantaa Kotal;Sudip Mittal;S. Narayanan;A. Joshi
- 通讯作者:Aritran Piplai;P. Ranade;Anantaa Kotal;Sudip Mittal;S. Narayanan;A. Joshi
Semantically Rich Framework to Automate Cyber Insurance Services
用于自动化网络保险服务的语义丰富的框架
- DOI:10.1109/tsc.2021.3113272
- 发表时间:2021
- 期刊:
- 影响因子:8.1
- 作者:Sane, Ketki;Joshi, Karuna Pande;Mittal, Sudip
- 通讯作者:Mittal, Sudip
Creating Cybersecurity Knowledge Graphs From Malware After Action Reports
- DOI:10.1109/access.2020.3039234
- 发表时间:2020-10
- 期刊:
- 影响因子:3.9
- 作者:Aritran Piplai;Sudip Mittal;A. Joshi;Tim Finin-;James Holt;Richard Zak
- 通讯作者:Aritran Piplai;Sudip Mittal;A. Joshi;Tim Finin-;James Holt;Richard Zak
Cybersecurity Threat Intelligence Augmentation and Embedding Improvement - A Healthcare Usecase
- DOI:10.1109/isi49825.2020.9280482
- 发表时间:2020-11
- 期刊:
- 影响因子:0
- 作者:Matthew Sills;P. Ranade;Sudip Mittal
- 通讯作者:Matthew Sills;P. Ranade;Sudip Mittal
Knowledge Enrichment by Fusing Representations for Malware Threat Intelligence and Behavior
- DOI:10.1109/isi49825.2020.9280512
- 发表时间:2020-11
- 期刊:
- 影响因子:0
- 作者:Aritran Piplai;Sudip Mittal;Mahmoud Abdelsalam;Maanak Gupta;A. Joshi;Tim Finin-
- 通讯作者:Aritran Piplai;Sudip Mittal;Mahmoud Abdelsalam;Maanak Gupta;A. Joshi;Tim Finin-
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sudip Mittal其他文献
Semantically Rich, Context Aware Access Control for Openstack
Openstack 语义丰富、上下文感知的访问控制
- DOI:
10.1109/cic.2018.00069 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Vishal Rathod;S. Narayanan;Sudip Mittal;A. Joshi - 通讯作者:
A. Joshi
Automatic Extraction of Metrics from SLAs for Cloud Service Management
从 SLA 中自动提取指标以进行云服务管理
- DOI:
10.1109/ic2e.2016.14 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Sudip Mittal;K. Joshi;C. Pearce;A. Joshi - 通讯作者:
A. Joshi
CAPoW: Context-Aware AI-Assisted Proof of Work based DDoS Defense
CAPoW:基于情境感知的人工智能辅助工作量证明 DDoS 防御
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Trisha Chakraborty;Shaswata Mitra;Sudip Mittal - 通讯作者:
Sudip Mittal
Is there a Security Mindset and Can it be Taught?
是否存在安全心态并且可以教授吗?
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Ambareen Siraj;Nigamanth Sridhar;John Hamilton;Latif Khan;Siddharth Kaza;Maanak Gupta;Sudip Mittal - 通讯作者:
Sudip Mittal
AI Security Threats against Pervasive Robotic Systems: A Course for Next Generation Cybersecurity Workforce
针对普遍机器人系统的人工智能安全威胁:下一代网络安全劳动力课程
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Sudip Mittal;Jingdao Chen - 通讯作者:
Jingdao Chen
Sudip Mittal的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sudip Mittal', 18)}}的其他基金
SaTC: EDU: Inculcate a culture of preparedness against AI security threats to pervasive robotic systems
SaTC:EDU:灌输一种针对普遍机器人系统的人工智能安全威胁做好准备的文化
- 批准号:
2246920 - 财政年份:2023
- 资助金额:
$ 10.58万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: EDU: Artificial Intelligence Assisted Malware Analysis
合作研究:SaTC:EDU:人工智能辅助恶意软件分析
- 批准号:
2025685 - 财政年份:2020
- 资助金额:
$ 10.58万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
- 批准号:
2330940 - 财政年份:2024
- 资助金额:
$ 10.58万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317232 - 财政年份:2024
- 资助金额:
$ 10.58万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338301 - 财政年份:2024
- 资助金额:
$ 10.58万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317233 - 财政年份:2024
- 资助金额:
$ 10.58万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338302 - 财政年份:2024
- 资助金额:
$ 10.58万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
- 批准号:
2330941 - 财政年份:2024
- 资助金额:
$ 10.58万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Small: Towards Secure and Trustworthy Tree Models
协作研究:SaTC:核心:小型:迈向安全可信的树模型
- 批准号:
2413046 - 财政年份:2024
- 资助金额:
$ 10.58万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: EDU: Adversarial Malware Analysis - An Artificial Intelligence Driven Hands-On Curriculum for Next Generation Cyber Security Workforce
协作研究:SaTC:EDU:对抗性恶意软件分析 - 下一代网络安全劳动力的人工智能驱动实践课程
- 批准号:
2230609 - 财政年份:2023
- 资助金额:
$ 10.58万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: EDU: RoCCeM: Bringing Robotics, Cybersecurity and Computer Science to the Middled School Classroom
合作研究:SaTC:EDU:RoCCeM:将机器人、网络安全和计算机科学带入中学课堂
- 批准号:
2312057 - 财政年份:2023
- 资助金额:
$ 10.58万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Medium: Understanding the Impact of Privacy Interventions on the Online Publishing Ecosystem
协作研究:SaTC:核心:媒介:了解隐私干预对在线出版生态系统的影响
- 批准号:
2237329 - 财政年份:2023
- 资助金额:
$ 10.58万 - 项目类别:
Standard Grant