Collaborative Research: Tailoring Energy Landscapes to Harness the Multistability for Reconfigurable 3D Buckled Structures
合作研究:定制能源景观以利用可重构 3D 屈曲结构的多稳定性
基本信息
- 批准号:2020676
- 负责人:
- 金额:$ 30.12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-15 至 2021-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This grant will focus on fundamental studies on the multistability of three-dimensional (3D) structures for well-controlled, active architectural reconfigurability. Reconfigurable structures can actively change their geometries and thereby their functionalities upon external stimuli (like mechanical forces, magnetic fields, electric fields, hydration, temperature, and pressure). Such smart, stimuli-responsive structures have a diverse range of applications in deployable solar panels, electromagnetic metamaterials, photonics, biomedical devices, soft robotics, metasurfaces, and many others. Most existing reconfiguration mechanisms, however, require persistent external stimuli to maintain the deformed shape. Reconfigurability through harnessing structural instabilities has emerged as a popular and powerful means of designing various multifunctional reconfigurable devices that can maintain their deformed shape without the need for persistent external stimuli. Despite intensive studies, the difficulty in realizing well-controlled architectural reconfigurability has significantly hindered the rational design of reconfigurable structures, especially for those composed of thin films. This research project will focus on understanding the fundamental relationship between the geometry and mechanical properties of 3D thin-film structures and their multistability and identifying the energy-efficient reconfiguration path from one stable state to another. In addition to the research activities, the project will contribute to the education of students at the graduate, undergraduate, and K-12 levels by supporting interdisciplinary doctoral student training, undergraduate research opportunities, and outreach activities to grade 6-9 girls and K-5 students from underrepresented groups.The objective of this project is to unravel the fundamental mechanics that govern architectural reconfiguration among multistable, symmetric and asymmetric configurations of flexible, three-dimensional (3D) thin-film structures. To achieve this objective, the specific aims of this project include: (1) maximize the energy barrier and eliminate intermediate local minima between stable states of 3D thin-film structures through energy landscape biasing, and (2) minimize the energy cost for shape change from one local minimum state to another, and realize the reconfigurability of 3D thin-film structures through magnetic force control. The research outcomes of the work will significantly advance our knowledge in the mechanics of multistable structures by (i) establishing relations between geometries and material compositions of thin-film structures and the energy landscape of different stable states, and (ii) determining the active forces to efficiently maneuver the structure from one stable state to another following the minimum energy path. In addition, the project will ultimately facilitate the design of well-controlled, smart reconfigurable structures and generate broad impacts on other fields, including physics, materials science, and smart materials and structures.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这笔赠款将集中在三维(3D)结构的多重稳定性的基础研究上,以实现良好控制的、主动的建筑可重构性。可重构结构可以在外界刺激(如机械力、磁场、电场、水化作用、温度和压力)的作用下主动改变其几何形状,从而改变其功能。这种智能的刺激响应型结构在可展开的太阳能电池板、电磁超材料、光子学、生物医学设备、软机器人、超表面等领域有着广泛的应用。然而,大多数现有的重构机制需要持续的外部刺激来保持变形的形状。通过利用结构不稳定性的可重构性已经成为设计各种多功能可重构器件的一种流行和强大的手段,这些器件可以在不需要持续的外部刺激的情况下保持其变形的形状。尽管人们进行了大量的研究,但实现可重构结构的可控性的困难已经严重阻碍了可重构结构的合理设计,特别是对于那些由薄膜组成的可重构结构。这一研究项目将集中于了解3D薄膜结构的几何和力学性质与其多稳定性之间的基本关系,并确定从一种稳定状态到另一种稳定状态的节能重新配置路径。除了研究活动,该项目还将通过支持跨学科博士生培训、本科生研究机会以及面向6-9年级女生和来自代表性不足群体的K-5学生的推广活动,为研究生、本科生和K-12学生的教育做出贡献。该项目的目标是揭示控制灵活、三维(3D)薄膜结构的多稳定、对称和非对称构型之间的建筑重构的基本机制。为了实现这一目标,本项目的具体目标包括:(1)通过能量景观偏置最大化3D薄膜结构的能量势垒,消除稳定状态之间的中间局部极小;(2)最小化从一个局部极小状态到另一个局部极小状态的形状变化的能量成本,并通过磁力控制实现3D薄膜结构的可重构性。这项工作的研究成果将极大地促进我们对多稳态结构力学的认识,通过(I)建立薄膜结构的几何和材料组成与不同稳态的能量图景之间的关系,以及(Ii)确定以最小能量路径有效地将结构从一个稳态操纵到另一个稳态的作用力。此外,该项目最终将促进控制良好的智能可重构结构的设计,并对其他领域产生广泛影响,包括物理、材料科学、智能材料和结构。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xueju Wang其他文献
Mechanics of deformation and failure in rechargeable battery materials
- DOI:
- 发表时间:
2016-08 - 期刊:
- 影响因子:0
- 作者:
Xueju Wang - 通讯作者:
Xueju Wang
A review of the multiscale mechanics of silicon electrodes in high-capacity lithium-ion batteries
高容量锂离子电池硅电极多尺度力学综述
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Haoran Wang;Shao;Xueju Wang;S. Xia;Huck Beng Chew - 通讯作者:
Huck Beng Chew
A Cohort Analysis of Patients with Stage I Twin-to-Twin Transfusion Syndrome from a Major Referral Hospital in Northern China
中国北方某主要转诊医院 I 期双胎输血综合征患者的队列分析
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:1
- 作者:
Jing Yang;P. Yuan;Yuan Wei;Hong;Xueju Wang;Luyao Li;Yuan;Jing Wang;X. Gong;Yangyu Zhao - 通讯作者:
Yangyu Zhao
Long noncoding RNAs regulate intrauterine adhesion and cervical cancer development and progression
长链非编码 RNA 调节子宫内粘连和宫颈癌的发生与进展
- DOI:
10.1016/j.semcdb.2023.02.007 - 发表时间:
2024-02-15 - 期刊:
- 影响因子:6.000
- 作者:
Xuemei Wang;Yu Gu;Leichao Zhang;Jingchao Ma;Yong Xia;Xueju Wang - 通讯作者:
Xueju Wang
Liquid-based encapsulation for implantable bioelectronics across broad pH environments
用于跨宽 pH 环境的可植入生物电子学的液体基封装
- DOI:
10.1038/s41467-025-55992-x - 发表时间:
2025-01-25 - 期刊:
- 影响因子:15.700
- 作者:
He Sun;Xiaoting Xue;Gabriella L. Robilotto;Xincheng Zhang;ChangHee Son;Xingchi Chen;Yue Cao;Kewang Nan;Yiyuan Yang;Gavin Fennell;Jaewook Jung;Yang Song;Huijie Li;Shao-Hao Lu;Yizhou Liu;Yi Li;Weiyi Zhang;Jie He;Xueju Wang;Yan Li;Aaron D. Mickle;Yi Zhang - 通讯作者:
Yi Zhang
Xueju Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xueju Wang', 18)}}的其他基金
CAREER: Mechanics of Active Polymers and Morphing Structures: Determine the Role of Molecular Interactions and Stiffness Heterogeneity in Reversible Shape Morphing
职业:活性聚合物和变形结构的力学:确定分子相互作用和刚度异质性在可逆形状变形中的作用
- 批准号:
2144687 - 财政年份:2022
- 资助金额:
$ 30.12万 - 项目类别:
Continuing Grant
Collaborative Research: Tailoring Energy Landscapes to Harness the Multistability for Reconfigurable 3D Buckled Structures
合作研究:定制能源景观以利用可重构 3D 屈曲结构的多稳定性
- 批准号:
2103012 - 财政年份:2020
- 资助金额:
$ 30.12万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Tailoring Electron and Spin Transport in Single Molecule Junctions
合作研究:定制单分子结中的电子和自旋输运
- 批准号:
2225370 - 财政年份:2023
- 资助金额:
$ 30.12万 - 项目类别:
Continuing Grant
Collaborative Research: Tailoring the Catalytic Properties of Pd Single Atoms Using Covalent Organic Frameworks
合作研究:利用共价有机框架定制 Pd 单原子的催化性能
- 批准号:
2308630 - 财政年份:2023
- 资助金额:
$ 30.12万 - 项目类别:
Standard Grant
Collaborative Research: Tailoring Electron and Spin Transport in Single Molecule Junctions
合作研究:定制单分子结中的电子和自旋输运
- 批准号:
2225369 - 财政年份:2023
- 资助金额:
$ 30.12万 - 项目类别:
Continuing Grant
Collaborative Research: Tailoring the Catalytic Properties of Pd Single Atoms Using Covalent Organic Frameworks
合作研究:利用共价有机框架定制 Pd 单原子的催化性能
- 批准号:
2308631 - 财政年份:2023
- 资助金额:
$ 30.12万 - 项目类别:
Standard Grant
Collaborative Research: Understanding and Tailoring the Anode-Electrolyte Interfacial Layers on the Stabilization of Lithium Metal Electrode
合作研究:理解和定制阳极-电解质界面层对锂金属电极稳定性的影响
- 批准号:
2312247 - 财政年份:2023
- 资助金额:
$ 30.12万 - 项目类别:
Standard Grant
CAS: Collaborative Research: Tailoring the Distribution of Transient vs. Dynamic Active Sites in Solid-Acid Catalysts and Their Impacts on Chemical Conversions
CAS:合作研究:定制固体酸催化剂中瞬时活性位点与动态活性位点的分布及其对化学转化的影响
- 批准号:
2154399 - 财政年份:2022
- 资助金额:
$ 30.12万 - 项目类别:
Standard Grant
Collaborative Research: Frameworks for Intelligent Adaptive Experimentation: Enhancing and Tailoring Digital Education
合作研究:智能自适应实验框架:增强和定制数字教育
- 批准号:
2209819 - 财政年份:2022
- 资助金额:
$ 30.12万 - 项目类别:
Standard Grant
Collaborative Research: Frameworks for Intelligent Adaptive Experimentation: Enhancing and Tailoring Digital Education
合作研究:智能自适应实验框架:增强和定制数字教育
- 批准号:
2209821 - 财政年份:2022
- 资助金额:
$ 30.12万 - 项目类别:
Standard Grant
Collaborative Research: Frameworks for Intelligent Adaptive Experimentation: Enhancing and Tailoring Digital Education
合作研究:智能自适应实验框架:增强和定制数字教育
- 批准号:
2209823 - 财政年份:2022
- 资助金额:
$ 30.12万 - 项目类别:
Standard Grant
CAS: Collaborative Research: Tailoring the Distribution of Transient vs. Dynamic Active Sites in Solid-Acid Catalysts and Their Impacts on Chemical Conversions
CAS:合作研究:定制固体酸催化剂中瞬时活性位点与动态活性位点的分布及其对化学转化的影响
- 批准号:
2154398 - 财政年份:2022
- 资助金额:
$ 30.12万 - 项目类别:
Standard Grant