GCR: Collaborative Research: Plasma-Biofilm Interactions at the Intersection of Physics, Chemistry, Biology and Engineering

GCR:合作研究:物理、化学、生物学和工程学交叉点的等离子体-生物膜相互作用

基本信息

  • 批准号:
    2020695
  • 负责人:
  • 金额:
    $ 281万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-10-01 至 2025-09-30
  • 项目状态:
    未结题

项目摘要

Low temperature plasmas – ionized gases – operating at atmospheric pressure are a copious source of reactive oxygen and nitrogen species (RONS). Plasma-produced RONS have the ability to combat antimicrobial resistant bacteria and serve as a novel approach to cancer treatment. Reduction-oxidation (redox) processes play a major role in the cellular life cycle and are the metabolic driving force for aerobic biology. Plasma-induced redox chemistry in cells can potentially regulate these processes. This project will investigate the capability of plasma for control of biofilms – coordinated functional communities of bacteria. Physically removing biofilms can be extremely difficult, and antibiotics and topical decontamination products are largely ineffective due to multipronged biofilm defenses. The control of biofilms has become a grand societal challenge due to their exceptionally broad range of use and impact, from environmental engineering to biomedical applications. As an example, biofilm induced corrosion is a severe problem for world maritime industries. Biofilms and antimicrobial resistance are also major issues in the food industry and in medicine. Antimicrobial resistance is predicted to become the number one health problem in 2050 and the Centers for Disease Control and Prevention reports that every 15 minutes one person in the US dies because of an infection that antibiotics cannot treat effectively. Although the consequences of biofilms are typically thought of as being negative, biofilm bacteria are also extensively used in bioreactors with beneficial applications ranging from water remediation to energy harvesting. This project combines several research advances in plasma science, microbiology and engineering – each significant in their own right – into a convergent, transformative project to investigate fundamental plasma-induced biofilm processes.The goal of the project is to develop the science required to understand the impact of plasmas on communities of living cells. Plasma treatment of organisms can produce non-local effects and systemic responses which are currently not understood. In complex organisms, such as animal models, it is difficult to quantify both the initiating plasma dose to individual cells and to diagnose consequences of the exposure – components of animal models are simply too inter-related. The proposed research will address the critical need to quantify plasma effects on organisms by developing the science required to obtain a fundamental understanding of plasma interactions within a biofilm – a simpler system of communicating organisms that allows access to diagnostics and modeling. Furthermore, model biofilm bacteria (e.g. Pseudomonas aeruginosa) are genetically tractable, lending themselves to detailed studies of plasma-induced effects at a molecular level. This improvement in understanding of systemic effects of plasma will be accomplished by investigating the biological response of plasma-treated, biofilm-associated, bacterial cells and their intercellular communication through the extra-cellular environment. The project will develop this new and convergent research frontier, combining plasma science, microbiology, and state-of-the-art printing methodologies, using biofilms as a model system. While initially focusing on global biofilm response to the plasma treatment, the project will advance plasma and 3D printing frontiers to develop highly controlled spatially-resolved experiments that could ultimately enable the treatment of a single bacterium cell in a biofilm and track the associated local and non-local biological impacts. The societal benefits of this research will be the ability to manipulate the growth and character of biofilms – for example, to eliminate biofilms where they are not desired, or to enhance their proliferation where biofilms are a desired product.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
低温等离子体-电离气体-在大气压下工作,是活性氧和氮物质(RONS)的丰富来源。等离子体产生的RONS具有对抗抗微生物耐药细菌的能力,并作为癌症治疗的新方法。还原-氧化(氧化还原)过程在细胞生命周期中起着重要作用,是有氧生物学的代谢驱动力。细胞中等离子体诱导的氧化还原化学可以潜在地调节这些过程。本计画将探讨电浆控制生物膜的能力--协调细菌的功能群.物理去除生物膜可能非常困难,抗生素和局部去污产品由于多管齐下的生物膜防御而在很大程度上无效。生物膜的控制已经成为一个巨大的社会挑战,因为它们的使用和影响范围非常广泛,从环境工程到生物医学应用。例如,生物膜引起的腐蚀是世界海事工业面临的一个严重问题。生物膜和抗菌素耐药性也是食品工业和医学中的主要问题。抗菌素耐药性预计将成为2050年的头号健康问题,美国疾病控制和预防中心报告说,每15分钟就有一个人死于抗生素无法有效治疗的感染。尽管生物膜的后果通常被认为是负面的,但生物膜细菌也广泛用于生物反应器中,其有益应用范围从水修复到能量收集。该项目结合了等离子体科学、微生物学和工程学的多项研究进展--每一项都具有重要意义--成为一个融合的、变革性的项目,以研究基本的等离子体诱导的生物膜过程。该项目的目标是发展了解等离子体对活细胞群落影响所需的科学。生物体的等离子体治疗可产生目前尚不清楚的非局部效应和全身反应。在复杂的生物体中,如动物模型,很难量化单个细胞的初始血浆剂量和诊断暴露的后果-动物模型的组成部分相互关联。拟议的研究将通过开发获得生物膜内等离子体相互作用的基本理解所需的科学来解决量化等离子体对生物体影响的迫切需要-一种更简单的生物体通信系统,允许进行诊断和建模。此外,模型生物膜细菌(例如铜绿假单胞菌)在遗传上是易处理的,这有助于在分子水平上对等离子体诱导的效应进行详细研究。通过研究等离子体处理的生物膜相关细菌细胞的生物学反应及其通过细胞外环境的细胞间通讯,将实现对等离子体全身效应的理解。该项目将开发这一新的融合研究前沿,结合等离子体科学,微生物学和最先进的打印方法,使用生物膜作为模型系统。虽然最初专注于全球生物膜对等离子体处理的反应,但该项目将推进等离子体和3D打印前沿,以开发高度受控的空间分辨实验,最终能够处理生物膜中的单个细菌细胞,并跟踪相关的局部和非局部生物影响。这项研究的社会效益将是操纵生物膜的生长和特性的能力-例如,消除不需要的生物膜,或在生物膜是期望产品的情况下提高其增殖。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Plasma‐induced inactivation of Staphylococcus aureus biofilms: The role of atomic oxygen and comparison with disinfectants and antibiotics
  • DOI:
    10.1002/ppap.202200147
  • 发表时间:
    2022-10
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    S. Nandula;V. S. Kondeti;Chi Q. Phan;Jianan Wang;M. Penningroth;J. Granick;P. Bruggeman;R. Hunter
  • 通讯作者:
    S. Nandula;V. S. Kondeti;Chi Q. Phan;Jianan Wang;M. Penningroth;J. Granick;P. Bruggeman;R. Hunter
The 2022 Plasma Roadmap: low temperature plasma science and technology
  • DOI:
    10.1088/1361-6463/ac5e1c
  • 发表时间:
    2022-09-15
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Adamovich, I;Agarwal, S.;von Woedtke, T.
  • 通讯作者:
    von Woedtke, T.
Grand challenges in low temperature plasmas
  • DOI:
    10.3389/fphy.2022.1040658
  • 发表时间:
    2022-10-14
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Lu, XinPei;Bruggeman, Peter J.;Ostrikov, Kostya (Ken)
  • 通讯作者:
    Ostrikov, Kostya (Ken)
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peter Bruggeman其他文献

Absolute OH density measurements in an atmospheric pressure dc glow discharge in air with water electrode by broadband UV absorption spectroscopy
通过宽带紫外吸收光谱法利用水电极测量空气中大气压直流辉光放电中的绝对 OH 密度
  • DOI:
    10.1088/0022-3727/48/42/424008
  • 发表时间:
    2015-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Qing Xiong;Zhiqiang Yang;Peter Bruggeman
  • 通讯作者:
    Peter Bruggeman
Development of a Chronic Wound Healing Device
慢性伤口愈合装置的开发
Rapid carbon-free iron ore reduction using an atmospheric pressure hydrogen microwave plasma
  • DOI:
    10.1016/j.cej.2023.145025
  • 发表时间:
    2023-09-15
  • 期刊:
  • 影响因子:
  • 作者:
    Sachin Kumar;Zichang Xiong;Julian Held;Peter Bruggeman;Uwe R. Kortshagen
  • 通讯作者:
    Uwe R. Kortshagen
Plasma characteristics and electrical breakdown between metal and water electrodes
金属和水电极之间的等离子体特性和电击穿
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Peter Bruggeman;E. Ribežl;J. Degroote;J. Vierendeels;C. Leys
  • 通讯作者:
    C. Leys

Peter Bruggeman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Peter Bruggeman', 18)}}的其他基金

Collaborative Research: ECO-CBET: Plasma-Assisted Dehalogenation of Persistent Halogen-Containing Waste Streams
合作研究:ECO-CBET:持久性含卤素废物流的等离子体辅助脱卤
  • 批准号:
    2318493
  • 财政年份:
    2023
  • 资助金额:
    $ 281万
  • 项目类别:
    Standard Grant
NSF-DFG Confine: Plasma-Catalysis in Confined Spaces for Cold Start NOx Abatement in Automotive Exhaust
NSF-DFG Confine:密闭空间中的等离子体催化用于冷启动汽车尾气中的氮氧化物减排
  • 批准号:
    2234270
  • 财政年份:
    2023
  • 资助金额:
    $ 281万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding Plasma-Liquid Interactions Through Controlled Plasma-Microdroplet Experiments and Modeling
合作研究:通过受控等离子体-微滴实验和建模了解等离子体-液体相互作用
  • 批准号:
    1903151
  • 财政年份:
    2019
  • 资助金额:
    $ 281万
  • 项目类别:
    Standard Grant
2018 Plasma Processing Science: Fundamental Insights in Plasma Processes
2018 等离子体加工科学:等离子体工艺的基本见解
  • 批准号:
    1824150
  • 财政年份:
    2018
  • 资助金额:
    $ 281万
  • 项目类别:
    Standard Grant
Collaborative Research: SusChEM: Mechanistic origins of synergetic effects in plasma catalysis
合作研究:SusChEM:等离子体催化协同效应的机制起源
  • 批准号:
    1703439
  • 财政年份:
    2017
  • 资助金额:
    $ 281万
  • 项目类别:
    Standard Grant
2016 Plasma Processing Science: Plasmas with Complex Interactions: Exploiting the Non-Equilibrium.
2016 等离子体处理科学:具有复杂相互作用的等离子体:利用非平衡。
  • 批准号:
    1615381
  • 财政年份:
    2016
  • 资助金额:
    $ 281万
  • 项目类别:
    Standard Grant
Unraveling the Unique Properties of Transient Discharges in Bubbles and Liquid Water
揭示气泡和液态水中瞬态放电的独特性质
  • 批准号:
    1500135
  • 财政年份:
    2015
  • 资助金额:
    $ 281万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: GCR: Growing a New Science of Landscape Terraformation: The Convergence of Rock, Fluids, and Life to form Complex Ecosystems Across Scales
合作研究:GCR:发展景观改造的新科学:岩石、流体和生命的融合形成跨尺度的复杂生态系统
  • 批准号:
    2426095
  • 财政年份:
    2024
  • 资助金额:
    $ 281万
  • 项目类别:
    Continuing Grant
Collaborative Research: GCR: Convergence on Phosphorus Sensing for Understanding Global Biogeochemistry and Enabling Pollution Management and Mitigation
合作研究:GCR:融合磷传感以了解全球生物地球化学并实现污染管理和缓解
  • 批准号:
    2317826
  • 财政年份:
    2023
  • 资助金额:
    $ 281万
  • 项目类别:
    Continuing Grant
Collaborative Research: GCR: Convergent Anthropocene Systems (Anthems) - A System-of-Systems Paradigm
合作研究:GCR:趋同的人类世系统(颂歌)——系统的系统范式
  • 批准号:
    2317877
  • 财政年份:
    2023
  • 资助金额:
    $ 281万
  • 项目类别:
    Continuing Grant
Collaborative Research: GCR: Convergent Anthropocene Systems (Anthems) - A System-of-Systems Paradigm
合作研究:GCR:趋同的人类世系统(颂歌)——系统的系统范式
  • 批准号:
    2317876
  • 财政年份:
    2023
  • 资助金额:
    $ 281万
  • 项目类别:
    Continuing Grant
Collaborative Research: GCR: Common Pool Resource Theory as a Scalable Framework for Catalyzing Stakeholder-Driven Solutions to the Freshwater Salinization Syndrome
合作研究:GCR:公共池资源理论作为催化利益相关者驱动的淡水盐化综合症解决方案的可扩展框架
  • 批准号:
    2312326
  • 财政年份:
    2023
  • 资助金额:
    $ 281万
  • 项目类别:
    Continuing Grant
Collaborative Research: GCR: Convergence on Phosphorus Sensing for Understanding Global Biogeochemistry and Enabling Pollution Management and Mitigation
合作研究:GCR:融合磷传感以了解全球生物地球化学并实现污染管理和缓解
  • 批准号:
    2317823
  • 财政年份:
    2023
  • 资助金额:
    $ 281万
  • 项目类别:
    Continuing Grant
Collaborative Research: GCR: Convergent Anthropocene Systems (Anthems) - A System-of-Systems Paradigm
合作研究:GCR:趋同的人类世系统(颂歌)——系统的系统范式
  • 批准号:
    2317874
  • 财政年份:
    2023
  • 资助金额:
    $ 281万
  • 项目类别:
    Continuing Grant
Collaborative Research: GCR: Scaling-Up Transformative Adaptation through Socio-Agroclimatology
合作研究:GCR:通过社会农业气候学扩大变革性适应
  • 批准号:
    2317821
  • 财政年份:
    2023
  • 资助金额:
    $ 281万
  • 项目类别:
    Continuing Grant
Collaborative Research: GCR: Convergent Anthropocene Systems (Anthems) - A System-of-Systems Paradigm
合作研究:GCR:趋同的人类世系统(颂歌)——系统的系统范式
  • 批准号:
    2317878
  • 财政年份:
    2023
  • 资助金额:
    $ 281万
  • 项目类别:
    Continuing Grant
Collaborative Research: GCR: Developing Integrated Agroecological Renewable Energy Systems through Convergent Research
合作研究:GCR:通过融合研究开发综合农业生态可再生能源系统
  • 批准号:
    2317983
  • 财政年份:
    2023
  • 资助金额:
    $ 281万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了